# This file is adapted from: https://github.com/tloen/alpaca-lora ( for merge ) and https://gist.github.com/benob/4850a0210b01672175942203aa36d300 ( for shard ) # It can merge the LoRA weights back into the base model for export to PyTorch state_dicts (`consolidated.0x.pth`). The number of shards is according to the user command argument. # They should help users who want to run inference in projects like llama.cpp or alpaca.cpp. import os import json import torch from peft import PeftModel, LoraConfig import argparse import transformers # args parser = argparse.ArgumentParser() # The original base model checkpoint dir parser.add_argument("--model_path", type=str, default='decapoda-research/llama-7b-hf') # The finetuned lora model checkpoint dir parser.add_argument("--lora_path",type=str, default='./lora-Vicuna/checkpoint-3000') # The output dir parser.add_argument("--out_path", type=str, default='./lora-Vicuna/checkpoint-3000-with-lora') parser.add_argument("--num_shards", type=int, default=None) args = parser.parse_args() # assert ( "LlamaTokenizer" in transformers._import_structure["models.llama"] ), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git" from transformers import LlamaTokenizer, LlamaForCausalLM params = { '65B': {"dim": 8192, "multiple_of": 256, "n_heads": 64, "n_layers": 80, "norm_eps": 1e-06, "vocab_size": -1}, '30B': {"dim": 6656, "multiple_of": 256, "n_heads": 52, "n_layers": 60, "norm_eps": 1e-06, "vocab_size": -1}, '13B': {"dim": 5120, "multiple_of": 256, "n_heads": 40, "n_layers": 40, "norm_eps": 1e-06, "vocab_size": -1}, '7B': {"dim": 4096, "multiple_of": 256, "n_heads": 32, "n_layers": 32, "norm_eps": 1e-06, "vocab_size": -1}, } NUM_SHARDS = { "7B": 1, "13B": 2, "30B": 4, "65B": 8, } layer_kind = { 'tok_embeddings': 'ParallelEmbedding', 'output': 'ColumnParallelLinear', 'attention.wq': 'ColumnParallelLinear', 'attention.wk': 'ColumnParallelLinear', 'attention.wv': 'ColumnParallelLinear', 'attention.wo': 'RowParallelLinear', 'feed_forward.w1': 'ColumnParallelLinear', 'feed_forward.w2': 'RowParallelLinear', 'feed_forward.w3': 'ColumnParallelLinear', 'attention_norm': None, 'ffn_norm': None, 'norm': None, 'rope.freqs': None, } print(f">>> load model from {args.model_path} and lora from {args.lora_path}....") tokenizer = LlamaTokenizer.from_pretrained(args.model_path) base_model = LlamaForCausalLM.from_pretrained( args.model_path, load_in_8bit=False, torch_dtype=torch.float16, device_map={"": "cpu"}, ) lora_model = PeftModel.from_pretrained( base_model, args.lora_path, device_map={"": "cpu"}, torch_dtype=torch.float16, ) # merge weights for layer in lora_model.base_model.model.model.layers: layer.self_attn.q_proj.merge_weights = True layer.self_attn.v_proj.merge_weights = True lora_model.train(False) lora_model_sd = lora_model.state_dict() n_layers = base_model.config.num_hidden_layers model_size = None for size in params.keys(): if n_layers == params[size]["n_layers"]: model_size = size print(f">>> automatically recognize model_size={size}") if model_size is None: raise Exception('cannot recognize model_size! please check if your model is llama-based model') n_heads = base_model.config.num_attention_heads assert n_heads == params[model_size]["n_heads"] dim = base_model.config.hidden_size assert dim == params[model_size]["dim"] dims_per_head = dim // n_heads base = 10000.0 inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head)) if args.num_shards is None: num_shards = NUM_SHARDS[model_size] else: num_shards = args.num_shards print(f'>>> will split model checkpoint in {num_shards} parts') def permute(w): return ( w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim) ) def unpermute(w): return ( w.view(n_heads, 2, dim // n_heads // 2, dim).transpose(1, 2).reshape(dim, dim) ) def translate_state_dict_key(k): k = k.replace("base_model.model.", "") if k == "model.embed_tokens.weight": return "tok_embeddings.weight" elif k == "model.norm.weight": return "norm.weight" elif k == "lm_head.weight": return "output.weight" elif k.startswith("model.layers."): layer = k.split(".")[2] if k.endswith(".self_attn.q_proj.weight"): return f"layers.{layer}.attention.wq.weight" elif k.endswith(".self_attn.k_proj.weight"): return f"layers.{layer}.attention.wk.weight" elif k.endswith(".self_attn.v_proj.weight"): return f"layers.{layer}.attention.wv.weight" elif k.endswith(".self_attn.o_proj.weight"): return f"layers.{layer}.attention.wo.weight" elif k.endswith(".mlp.gate_proj.weight"): return f"layers.{layer}.feed_forward.w1.weight" elif k.endswith(".mlp.down_proj.weight"): return f"layers.{layer}.feed_forward.w2.weight" elif k.endswith(".mlp.up_proj.weight"): return f"layers.{layer}.feed_forward.w3.weight" elif k.endswith(".input_layernorm.weight"): return f"layers.{layer}.attention_norm.weight" elif k.endswith(".post_attention_layernorm.weight"): return f"layers.{layer}.ffn_norm.weight" elif k.endswith("rotary_emb.inv_freq") or "lora" in k: return None else: print(layer, k) raise NotImplementedError else: print(k) raise NotImplementedError new_state_dict = {} for k, v in lora_model_sd.items(): new_k = translate_state_dict_key(k) if new_k is not None: if "wq" in new_k or "wk" in new_k: new_state_dict[new_k] = unpermute(v) else: new_state_dict[new_k] = v os.makedirs(args.out_path, exist_ok=True) if num_shards == 1: torch.save(new_state_dict, f"{args.out_path}/consolidated.00.pth") with open(f"{args.out_path}/params.json", "w") as f: json.dump(params[model_size], f) else: output = [dict() for x in range(num_shards)] print('>>> start converting to shards...') # sharded the models for key in new_state_dict.keys(): tensors = [new_state_dict[key]] print(key) print(' in shapes=', [p.shape for p in tensors]) for pattern, kind in layer_kind.items(): if key.replace('.weight', '').endswith(pattern): print(' kind=', kind) if kind == 'ColumnParallelLinear': with torch.no_grad(): merged = torch.cat(tensors, 0) slice_size = merged.shape[0] // num_shards for rank in range(num_shards): output[rank][key] = merged[slice_size * rank: slice_size * (rank + 1),:].clone().detach() elif kind in ('ParallelEmbedding', 'RowParallelLinear'): with torch.no_grad(): merged = torch.cat(tensors, 1) slice_size = merged.shape[1] // num_shards for rank in range(num_shards): output[rank][key] = merged[:,slice_size * rank: slice_size * (rank + 1)].clone().detach() else: for rank in range(num_shards): output[rank][key] = tensors[0] print(' out shapes=', [output[rank][key].shape for rank in range(num_shards)]) print() break print('saving...') with open(os.path.join(args.out_path, 'params.json'), 'w') as fp: fp.write(json.dumps(params)) for rank in range(num_shards): print(' ', rank) torch.save(output[rank], os.path.join(args.out_path, 'consolidated.%02d.pth' % rank)) print('done.')