import os from typing import List from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma from langchain.chains import ( ConversationalRetrievalChain, ) from langchain.document_loaders import PyPDFLoader from langchain.chat_models import ChatOpenAI from langchain.prompts.chat import ( ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate, ) from langchain.docstore.document import Document from langchain.memory import ChatMessageHistory, ConversationBufferMemory import chainlit as cl text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) system_template = """Use the following pieces of context to answer the users question. If you don't know the answer, just say that you don't know, don't try to make up an answer. ALWAYS return a "SOURCES" part in your answer. The "SOURCES" part should be a reference to the source of the document from which you got your answer. And if the user greets with greetings like Hi, hello, How are you, etc reply accordingly as well. Example of your response should be: The answer is foo SOURCES: xyz Begin! ---------------- {summaries}""" messages = [ SystemMessagePromptTemplate.from_template(system_template), HumanMessagePromptTemplate.from_template("{question}"), ] prompt = ChatPromptTemplate.from_messages(messages) chain_type_kwargs = {"prompt": prompt} def process_file(file: cl.AskFileMessage): import tempfile with tempfile.NamedTemporaryFile(mode="w", delete=False) as tempfile: with open(tempfile.name, "wb") as f: f.write(file.content) pypdf_loader = PyPDFLoader(tempfile.name) texts = pypdf_loader.load_and_split() texts = [text.page_content for text in texts] return texts @cl.on_chat_start async def on_chat_start(): files = None # Wait for the user to upload a file while files == None: files = await cl.AskFileMessage( content="Please upload a PDF file to begin!", accept=["application/pdf"], max_size_mb=20, timeout=180, ).send() file = files[0] msg = cl.Message( content=f"Processing `{file.name}`..." ) await msg.send() # load the file texts = process_file(file) print(texts[0]) # Create a metadata for each chunk metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))] # Create a Chroma vector store embeddings = OpenAIEmbeddings() docsearch = await cl.make_async(Chroma.from_texts)( texts, embeddings, metadatas=metadatas ) message_history = ChatMessageHistory() memory = ConversationBufferMemory( memory_key="chat_history", output_key="answer", chat_memory=message_history, return_messages=True, ) # Create a chain that uses the Chroma vector store chain = ConversationalRetrievalChain.from_llm( ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True), chain_type="stuff", retriever=docsearch.as_retriever(), memory=memory, return_source_documents=True, ) # Let the user know that the system is ready msg.content = f"Processing `{file.name}` done. You can now ask questions!" await msg.update() cl.user_session.set("chain", chain) @cl.on_message async def main(message): chain = cl.user_session.get("chain") # type: ConversationalRetrievalChain cb = cl.AsyncLangchainCallbackHandler() res = await chain.acall(message.content, callbacks=[cb]) answer = res["answer"] source_documents = res["source_documents"] # type: List[Document] text_elements = [] # type: List[cl.Text] if source_documents: for source_idx, source_doc in enumerate(source_documents): source_name = f"source_{source_idx}" # Create the text element referenced in the message text_elements.append( cl.Text(content=source_doc.page_content, name=source_name) ) source_names = [text_el.name for text_el in text_elements] if source_names: answer += f"\nSources: {', '.join(source_names)}" else: answer += "\nNo sources found" await cl.Message(content=answer, elements=text_elements).send()