from scipy.spatial.distance import cosine import argparse import json import os import openai import pdb def read_text(input_file): arr = open(input_file).read().split("\n") return arr[:-1] class OpenAIModel: def __init__(self): self.debug = False self.model_name = None print("In OpenAI API constructor") def init_model(self,model_name = None): #print("Init model",model_name) openai.api_key = os.getenv("OPENAI_API_KEY") if (len(openai.api_key) == 0): print("Open API key not set") if (model_name is None): self.model_name = "text-similarity-ada-001" else: self.model_name = model_name def compute_embeddings(self,input_file_name,input_data,is_file): if (len(openai.api_key) == 0): print("Open API key not set") return [],[] in_file = self.model_name + '.'.join(input_file_name.split('.')[:-1]) + "_embed.json" cached = False try: fp = open(in_file) cached = True embeddings = json.load(fp) print("Using cached embeddings") except: pass texts = read_text(input_data) if is_file == True else input_data if (not cached): print(f"Computing embeddings for {input_file_name} and model {self.model_name}") response = openai.Embedding.create( input=texts, model=self.model_name ) embeddings = [] for i in range(len(response['data'])): embeddings.append(response['data'][i]['embedding']) if (not cached): with open(in_file,"w") as fp: json.dump(embeddings,fp) return texts,embeddings def output_results(self,output_file,texts,embeddings,main_index = 0): if (len(openai.api_key) == 0): print("Open API key not set") return {} # Calculate cosine similarities # Cosine similarities are in [-1, 1]. Higher means more similar cosine_dict = {} #print("Total sentences",len(texts)) for i in range(len(texts)): cosine_dict[texts[i]] = 1 - cosine(embeddings[main_index], embeddings[i]) #print("Input sentence:",texts[main_index]) sorted_dict = dict(sorted(cosine_dict.items(), key=lambda item: item[1],reverse = True)) if (self.debug): for key in sorted_dict: print("Cosine similarity with \"%s\" is: %.3f" % (key, sorted_dict[key])) if (output_file is not None): with open(output_file,"w") as fp: fp.write(json.dumps(sorted_dict,indent=0)) return sorted_dict if __name__ == '__main__': parser = argparse.ArgumentParser(description='OpenAI model for sentence embeddings ',formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-input', action="store", dest="input",required=True,help="Input file with sentences") parser.add_argument('-output', action="store", dest="output",default="output.txt",help="Output file with results") parser.add_argument('-model', action="store", dest="model",default="text-similarity-ada-001",help="model name") results = parser.parse_args() obj = OpenAIModel() obj.init_model(results.model) texts, embeddings = obj.compute_embeddings(results.input,is_file = True) results = obj.output_results(results.output,texts,embeddings)