import streamlit as st import pandas as pd import numpy as np import random from backend.utils import make_grid, load_dataset, load_model, load_images from backend.smooth_grad import generate_smoothgrad_mask, ShowImage, fig2img from transformers import AutoFeatureExtractor, AutoModelForImageClassification import torch from matplotlib.backends.backend_agg import RendererAgg _lock = RendererAgg.lock st.set_page_config(layout='wide') BACKGROUND_COLOR = '#bcd0e7' st.title('Feature attribution with SmoothGrad') st.write('Which features are responsible for the current prediction? ') imagenet_df = pd.read_csv('./data/ImageNet_metadata.csv') # --------------------------- LOAD function ----------------------------- # @st.cache(allow_output_mutation=True) # @st.cache_data # def load_images(image_ids): # images = [] # for image_id in image_ids: # dataset = load_dataset(image_id//10000) # images.append(dataset[image_id%10000]) # return images # @st.cache(allow_output_mutation=True, suppress_st_warning=True, show_spinner=False) # @st.cache_resource # def load_model(model_name): # with st.spinner(f"Loading {model_name} model! This process might take 1-2 minutes..."): # if model_name == 'ResNet': # model_file_path = 'microsoft/resnet-50' # feature_extractor = AutoFeatureExtractor.from_pretrained(model_file_path, crop_pct=1.0) # model = AutoModelForImageClassification.from_pretrained(model_file_path) # model.eval() # elif model_name == 'ConvNeXt': # model_file_path = 'facebook/convnext-tiny-224' # feature_extractor = AutoFeatureExtractor.from_pretrained(model_file_path, crop_pct=1.0) # model = AutoModelForImageClassification.from_pretrained(model_file_path) # model.eval() # else: # model = torch.hub.load('pytorch/vision:v0.10.0', 'mobilenet_v2', pretrained=True) # model.eval() # feature_extractor = None # return model, feature_extractor images = [] image_ids = [] # INPUT ------------------------------ st.header('Input') with st.form('smooth_grad_form'): st.markdown('**Model and Input Setting**') selected_models = st.multiselect('Model', options=['ConvNeXt', 'ResNet', 'MobileNet']) selected_image_set = st.selectbox('Image set', ['User-defined set', 'Random set']) summit_button = st.form_submit_button('Set') if summit_button: setting_container = st.container() # for id in image_ids: # images = load_images(image_ids) with st.form('2nd_form'): st.markdown('**Image set setting**') if selected_image_set == 'Random set': no_images = st.slider('Number of images', 1, 50, value=10) image_ids = random.sample(list(range(50_000)), k=no_images) else: text = st.text_area('Specific Image IDs', value='0') image_ids = list(map(lambda x: int(x.strip()), text.split(','))) run_button = st.form_submit_button('Display output') if run_button: for id in image_ids: images = load_images(image_ids) st.header('Output') models = {} feature_extractors = {} for i, model_name in enumerate(selected_models): models[model_name], feature_extractors[model_name] = load_model(model_name) # DISPLAY ---------------------------------- header_cols = st.columns([1, 1] + [2]*len(selected_models)) header_cols[0].markdown(f'
Image ID
', unsafe_allow_html=True) header_cols[1].markdown(f'
Original Image
', unsafe_allow_html=True) for i, model_name in enumerate(selected_models): header_cols[i + 2].markdown(f'
{model_name}
', unsafe_allow_html=True) grids = make_grid(cols=2+len(selected_models)*2, rows=len(image_ids)+1) # grids[0][0].write('Image ID') # grids[0][1].write('Original image') # for i, model_name in enumerate(selected_models): # models[model_name], feature_extractors[model_name] = load_model(model_name) @st.cache(allow_output_mutation=True) # @st.cache_data def generate_images(image_id, model_name): j = image_ids.index(image_id) image = images[j]['image'] return generate_smoothgrad_mask( image, model_name, models[model_name], feature_extractors[model_name], num_samples=10) with _lock: for j, (image_id, image_dict) in enumerate(zip(image_ids, images)): grids[j][0].write(f'{image_id}. {image_dict["label"]}') image = image_dict['image'] ori_image = ShowImage(np.asarray(image)) grids[j][1].image(ori_image) for i, model_name in enumerate(selected_models): # ori_image, heatmap_image, masked_image = generate_smoothgrad_mask(image, # model_name, models[model_name], feature_extractors[model_name], num_samples=10) heatmap_image, masked_image = generate_images(image_id, model_name) # grids[j][1].image(ori_image) grids[j][i*2+2].image(heatmap_image) grids[j][i*2+3].image(masked_image)