File size: 11,224 Bytes
18f2f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c1e42b
 
 
78866a7
 
18f2f54
 
 
 
 
78866a7
 
18f2f54
 
 
 
 
 
 
 
 
 
 
 
 
0c1e42b
78866a7
 
0c1e42b
 
 
 
 
78866a7
 
0c1e42b
 
 
 
 
 
 
 
78866a7
 
0c1e42b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18f2f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78866a7
 
 
 
 
 
 
 
 
18f2f54
 
78866a7
 
 
18f2f54
 
78866a7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import streamlit as st
import pickle

import io
from typing import List, Optional

import markdown
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
import plotly.graph_objects as go
import streamlit as st
from plotly import express as px
from plotly.subplots import make_subplots
from tqdm import trange

import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification

@st.cache(allow_output_mutation=True)
# @st.cache_resource
def load_dataset(data_index):
    with open(f'./data/preprocessed_image_net/val_data_{data_index}.pkl', 'rb') as file:
        dataset = pickle.load(file)
    return dataset

@st.cache(allow_output_mutation=True)
# @st.cache_resource
def load_dataset_dict():
    dataset_dict = {}
    progress_empty = st.empty()
    text_empty = st.empty()
    text_empty.write("Loading datasets...")
    progress_bar = progress_empty.progress(0.0)
    for data_index in trange(5):
        dataset_dict[data_index] = load_dataset(data_index)
        progress_bar.progress((data_index+1)/5)
    progress_empty.empty()
    text_empty.empty()
    return dataset_dict


# @st.cache_data
@st.cache(allow_output_mutation=True)
def load_image(image_id):
    dataset = load_dataset(image_id//10000)
    image = dataset[image_id%10000]
    return image

# @st.cache_data
@st.cache(allow_output_mutation=True)
def load_images(image_ids):
    images = []
    for image_id in image_ids:
        image = load_image(image_id)
        images.append(image)
    return images


@st.cache(allow_output_mutation=True, suppress_st_warning=True, show_spinner=False)
# @st.cache_resource
def load_model(model_name):
    with st.spinner(f"Loading {model_name} model! This process might take 1-2 minutes..."):
        if model_name == 'ResNet':
            model_file_path = 'microsoft/resnet-50'
            feature_extractor = AutoFeatureExtractor.from_pretrained(model_file_path, crop_pct=1.0)
            model = AutoModelForImageClassification.from_pretrained(model_file_path)
            model.eval()
        elif model_name == 'ConvNeXt':
            model_file_path = 'facebook/convnext-tiny-224'
            feature_extractor = AutoFeatureExtractor.from_pretrained(model_file_path, crop_pct=1.0)
            model = AutoModelForImageClassification.from_pretrained(model_file_path)
            model.eval()
        else:
            model = torch.hub.load('pytorch/vision:v0.10.0', 'mobilenet_v2', pretrained=True)
            model.eval()
            feature_extractor = None
    return model, feature_extractor


def make_grid(cols=None,rows=None):
    grid = [0]*rows
    for i in range(rows):
        with st.container():
            grid[i] = st.columns(cols)
    return grid


def use_container_width_percentage(percentage_width:int = 75):
    max_width_str = f"max-width: {percentage_width}%;"
    st.markdown(f""" 
                <style> 
                .reportview-container .main .block-container{{{max_width_str}}}
                </style>    
                """, 
                unsafe_allow_html=True,
    )

matplotlib.use("Agg")
COLOR = "#31333f"
BACKGROUND_COLOR = "#ffffff"


def grid_demo():
    """Main function. Run this to run the app"""
    st.sidebar.title("Layout and Style Experiments")
    st.sidebar.header("Settings")
    st.markdown(
        """
# Layout and Style Experiments

The basic question is: Can we create a multi-column dashboard with plots, numbers and text using
the [CSS Grid](https://gridbyexample.com/examples)?

Can we do it with a nice api?
Can have a dark theme?
"""
    )

    select_block_container_style()
    add_resources_section()

    # My preliminary idea of an API for generating a grid
    with Grid("1 1 1", color=COLOR, background_color=BACKGROUND_COLOR) as grid:
        grid.cell(
            class_="a",
            grid_column_start=2,
            grid_column_end=3,
            grid_row_start=1,
            grid_row_end=2,
        ).markdown("# This is A Markdown Cell")
        grid.cell("b", 2, 3, 2, 3).text("The cell to the left is a dataframe")
        grid.cell("c", 3, 4, 2, 3).plotly_chart(get_plotly_fig())
        grid.cell("d", 1, 2, 1, 3).dataframe(get_dataframe())
        grid.cell("e", 3, 4, 1, 2).markdown(
            "Try changing the **block container style** in the sidebar!"
        )
        grid.cell("f", 1, 3, 3, 4).text(
            "The cell to the right is a matplotlib svg image"
        )
        grid.cell("g", 3, 4, 3, 4).pyplot(get_matplotlib_plt())


def add_resources_section():
    """Adds a resources section to the sidebar"""
    st.sidebar.header("Add_resources_section")
    st.sidebar.markdown(
        """
- [gridbyexample.com] (https://gridbyexample.com/examples/)
"""
    )


class Cell:
    """A Cell can hold text, markdown, plots etc."""

    def __init__(
        self,
        class_: str = None,
        grid_column_start: Optional[int] = None,
        grid_column_end: Optional[int] = None,
        grid_row_start: Optional[int] = None,
        grid_row_end: Optional[int] = None,
    ):
        self.class_ = class_
        self.grid_column_start = grid_column_start
        self.grid_column_end = grid_column_end
        self.grid_row_start = grid_row_start
        self.grid_row_end = grid_row_end
        self.inner_html = ""

    def _to_style(self) -> str:
        return f"""
.{self.class_} {{
    grid-column-start: {self.grid_column_start};
    grid-column-end: {self.grid_column_end};
    grid-row-start: {self.grid_row_start};
    grid-row-end: {self.grid_row_end};
}}
"""

    def text(self, text: str = ""):
        self.inner_html = text

    def markdown(self, text):
        self.inner_html = markdown.markdown(text)

    def dataframe(self, dataframe: pd.DataFrame):
        self.inner_html = dataframe.to_html()

    def plotly_chart(self, fig):
        self.inner_html = f"""
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
<body>
    <p>This should have been a plotly plot.
    But since *script* tags are removed when inserting MarkDown/ HTML i cannot get it to workto work.
    But I could potentially save to svg and insert that.</p>
    <div id='divPlotly'></div>
    <script>
        var plotly_data = {fig.to_json()}
        Plotly.react('divPlotly', plotly_data.data, plotly_data.layout);
    </script>
</body>
"""

    def pyplot(self, fig=None, **kwargs):
        string_io = io.StringIO()
        plt.savefig(string_io, format="svg", fig=(2, 2))
        svg = string_io.getvalue()[215:]
        plt.close(fig)
        self.inner_html = '<div height="200px">' + svg + "</div>"

    def _to_html(self):
        return f"""<div class="box {self.class_}">{self.inner_html}</div>"""


class Grid:
    """A (CSS) Grid"""

    def __init__(
        self,
        template_columns="1 1 1",
        gap="10px",
        background_color=COLOR,
        color=BACKGROUND_COLOR,
    ):
        self.template_columns = template_columns
        self.gap = gap
        self.background_color = background_color
        self.color = color
        self.cells: List[Cell] = []

    def __enter__(self):
        return self

    def __exit__(self, type, value, traceback):
        st.markdown(self._get_grid_style(), unsafe_allow_html=True)
        st.markdown(self._get_cells_style(), unsafe_allow_html=True)
        st.markdown(self._get_cells_html(), unsafe_allow_html=True)

    def _get_grid_style(self):
        return f"""
<style>
    .wrapper {{
    display: grid;
    grid-template-columns: {self.template_columns};
    grid-gap: {self.gap};
    background-color: {self.color};
    color: {self.background_color};
    }}
    .box {{
    background-color: {self.color};
    color: {self.background_color};
    border-radius: 0px;
    padding: 0px;
    font-size: 100%;
    text-align: center;
    }}
    table {{
        color: {self.color}
    }}
</style>
"""

    def _get_cells_style(self):
        return (
            "<style>"
            + "\n".join([cell._to_style() for cell in self.cells])
            + "</style>"
        )

    def _get_cells_html(self):
        return (
            '<div class="wrapper">'
            + "\n".join([cell._to_html() for cell in self.cells])
            + "</div>"
        )

    def cell(
        self,
        class_: str = None,
        grid_column_start: Optional[int] = None,
        grid_column_end: Optional[int] = None,
        grid_row_start: Optional[int] = None,
        grid_row_end: Optional[int] = None,
    ):
        cell = Cell(
            class_=class_,
            grid_column_start=grid_column_start,
            grid_column_end=grid_column_end,
            grid_row_start=grid_row_start,
            grid_row_end=grid_row_end,
        )
        self.cells.append(cell)
        return cell


def select_block_container_style():
    """Add selection section for setting setting the max-width and padding
    of the main block container"""
    st.sidebar.header("Block Container Style")
    max_width_100_percent = st.sidebar.checkbox("Max-width: 100%?", False)
    if not max_width_100_percent:
        max_width = st.sidebar.slider("Select max-width in px", 100, 2000, 1200, 100)
    else:
        max_width = 1200
    dark_theme = st.sidebar.checkbox("Dark Theme?", False)
    padding_top = st.sidebar.number_input("Select padding top in rem", 0, 200, 5, 1)
    padding_right = st.sidebar.number_input("Select padding right in rem", 0, 200, 1, 1)
    padding_left = st.sidebar.number_input("Select padding left in rem", 0, 200, 1, 1)
    padding_bottom = st.sidebar.number_input(
        "Select padding bottom in rem", 0, 200, 10, 1
    )
    if dark_theme:
        global COLOR
        global BACKGROUND_COLOR
        BACKGROUND_COLOR = "rgb(17,17,17)"
        COLOR = "#fff"

    _set_block_container_style(
        max_width,
        max_width_100_percent,
        padding_top,
        padding_right,
        padding_left,
        padding_bottom,
    )


def _set_block_container_style(
    max_width: int = 1200,
    max_width_100_percent: bool = False,
    padding_top: int = 5,
    padding_right: int = 1,
    padding_left: int = 1,
    padding_bottom: int = 10,
):
    if max_width_100_percent:
        max_width_str = f"max-width: 100%;"
    else:
        max_width_str = f"max-width: {max_width}px;"
    st.markdown(
        f"""
<style>
    .reportview-container .main .block-container{{
        {max_width_str}
        padding-top: {padding_top}rem;
        padding-right: {padding_right}rem;
        padding-left: {padding_left}rem;
        padding-bottom: {padding_bottom}rem;
    }}
    .reportview-container .main {{
        color: {COLOR};
        background-color: {BACKGROUND_COLOR};
    }}
</style>
""",
        unsafe_allow_html=True,
    )


# @st.cache
# def get_dataframe() -> pd.DataFrame():
#     """Dummy DataFrame"""
#     data = [
#         {"quantity": 1, "price": 2},
#         {"quantity": 3, "price": 5},
#         {"quantity": 4, "price": 8},
#     ]
#     return pd.DataFrame(data)


# def get_plotly_fig():
#     """Dummy Plotly Plot"""
#     return px.line(data_frame=get_dataframe(), x="quantity", y="price")


# def get_matplotlib_plt():
#     get_dataframe().plot(kind="line", x="quantity", y="price", figsize=(5, 3))