import os import streamlit as st import pickle import time from langchain import OpenAI from langchain.chains import RetrievalQAWithSourcesChain from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.document_loaders import UnstructuredURLLoader from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import FAISS from dotenv import load_dotenv # Load environment variables load_dotenv() openai_api_key = os.getenv('/content/openkey.env') # Correct the key name to match the environment variable # Set OpenAI API key os.environ['OPENAI_API_KEY'] = '/content/openkey.env' st.title("RockyBot: News Research Tool 📈") st.sidebar.title("News Article URLs") urls = [] for i in range(3): url = st.sidebar.text_input(f"URL {i+1}") urls.append(url) process_url_clicked = st.sidebar.button("Process URLs") file_path = "faiss_store_openai.pkl" main_placeholder = st.empty() llm = OpenAI(temperature=0.9, max_tokens=500) if process_url_clicked: # Load data loader = UnstructuredURLLoader(urls=urls) main_placeholder.text("Data Loading...Started...✅✅✅") data = loader.load() # Split data text_splitter = RecursiveCharacterTextSplitter( separators=['\n\n', '\n', '.', ','], chunk_size=1000 ) main_placeholder.text("Text Splitter...Started...✅✅✅") docs = text_splitter.split_documents(data) # Debugging: Print the number of documents print("Number of Documents:", len(docs)) if docs: # Create embeddings and save to FAISS index embeddings = OpenAIEmbeddings() # Generate embeddings for the documents doc_texts = [doc.text for doc in docs] embeddings = embeddings.embed(doc_texts) # Debugging: Print the number of embeddings print("Number of Embeddings:", len(embeddings)) if embeddings: vectorstore_openai = FAISS.from_documents(docs, embeddings) main_placeholder.text("Embedding Vector Started Building...✅✅✅") time.sleep(2) # Save the FAISS index to a pickle file with open(file_path, "wb") as f: pickle.dump(vectorstore_openai, f) else: main_placeholder.text("Embedding creation failed. No embeddings found.") else: main_placeholder.text("Document splitting failed. No documents found.") query = main_placeholder.text_input("Question: ") if query: if os.path.exists(file_path): with open(file_path, "rb") as f: vectorstore = pickle.load(f) chain = RetrievalQAWithSourcesChain.from_llm(llm=llm, retriever=vectorstore.as_retriever()) result = chain({"question": query}, return_only_outputs=True) # Display the answer st.header("Answer") st.write(result["answer"]) # Display sources, if available sources = result.get("sources", "") if sources: st.subheader("Sources:") sources_list = sources.split("\n") for source in sources_list: st.write(source)