import fitz # PyMuPDF for PDF processing from PIL import Image import pytesseract from transformers import pipeline, Blip2Processor, Blip2ForConditionalGeneration import streamlit as st import os import re from docx import Document from langdetect import detect import asyncio # For asynchronous processing # Initialize BLIP-2 model and processor for image-to-text @st.cache_resource # Use st.cache_resource for caching models def load_blip2_model(): processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b") return processor, model processor, model = load_blip2_model() # Initialize translation pipeline for Korean to English @st.cache_resource # Use st.cache_resource for caching models def load_translation_model(): return pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") translator = load_translation_model() # Path to Tesseract executable for OCR pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract" def extract_text_from_image(image): """Extract text from image using OCR or BLIP-2.""" # First try using BLIP-2 image = image.convert("RGB") inputs = processor(images=image, return_tensors="pt") generated_ids = model.generate(**inputs) decoded_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] # Fallback to OCR if BLIP-2 extraction fails if not decoded_text.strip(): decoded_text = pytesseract.image_to_string(image, lang='kor+eng') return decoded_text.strip() def extract_from_pdf(pdf_path): """Extract text from PDF by combining direct extraction and OCR fallback.""" doc = fitz.open(pdf_path) full_text = "" for page_num in range(len(doc)): page = doc.load_page(page_num) # Try extracting text directly text = page.get_text() # If no text, fallback to OCR if not text.strip(): pix = page.get_pixmap() image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) text = extract_text_from_image(image) full_text += text + "\n" return full_text.strip() def extract_from_word(docx_path): doc = Document(docx_path) full_text = "" for para in doc.paragraphs: full_text += para.text + "\n" return full_text.strip() def clean_text(text): return re.sub(r'[\x00-\x1f\x7f-\x9f]', '', text).strip() def translate_text(text): if not text.strip(): return "No text available for translation." detected_language = detect(text) st.write(f"Detected language: {detected_language}") if detected_language == "en": return "The text is already in English." chunks = [text[i:i + 50000] for i in range(0, len(text), 50000)] translated_text = "" for chunk in chunks: translated_chunk = translator(chunk, max_length=400) if isinstance(translated_chunk, list) and 'translation_text' in translated_chunk[0]: translated_text += translated_chunk[0]['translation_text'] + " " return translated_text.strip() def create_pdf(translated_text, output_path): doc = fitz.open() page = doc.new_page() # Define text insertion rectangle rect = fitz.Rect(50, 50, 550, 750) # Insert text using the defined rectangle page.insert_textbox( rect, translated_text, fontsize=12, fontname="helv", color=(0, 0, 0), ) doc.save(output_path) async def process_document(uploaded_file): file_extension = uploaded_file.name.split(".")[-1].lower() temp_file_path = f"temp.{file_extension}" with open(temp_file_path, "wb") as f: f.write(uploaded_file.getbuffer()) try: if file_extension == "pdf": extracted_text = extract_from_pdf(temp_file_path) elif file_extension in ["jpg", "jpeg", "png"]: image = Image.open(temp_file_path) extracted_text = extract_text_from_image(image) elif file_extension == "docx": extracted_text = extract_from_word(temp_file_path) else: st.error("Unsupported file format.") return extracted_text = clean_text(extracted_text) st.write("Extracted Text (First 50000 characters):", extracted_text[:50000]) translated_text = translate_text(extracted_text) st.subheader("Translated Text (English)") st.write(translated_text) if translated_text.strip(): output_pdf_path = "translated_document.pdf" create_pdf(translated_text, output_pdf_path) with open(output_pdf_path, "rb") as f: st.download_button( label="Download Translated PDF", data=f, file_name="translated_document.pdf", mime="application/pdf" ) else: st.warning("No content to save in the translated PDF.") finally: if os.path.exists(temp_file_path): os.remove(temp_file_path) if os.path.exists("translated_document.pdf"): os.remove("translated_document.pdf") st.title("Multilingual Document Translator") uploaded_file = st.file_uploader("Upload a document (PDF, Word, or Image)", type=["pdf", "docx", "jpg", "jpeg", "png"]) if uploaded_file is not None: with st.spinner("Processing document..."): asyncio.run(process_document(uploaded_file))