from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import FAISS from transformers import pipeline import streamlit as st import requests from io import BytesIO # Set up Hugging Face model pipeline for text generation pipe = pipeline("text-generation", model="meta-llama/Llama-Guard-3-8B-INT8") # List of GitHub PDF URLs PDF_URLS = [ "https://github.com/TahirSher/GenAI_Lawyers_Guide/blob/main/bi%20pat%20graphs.pdf", "https://github.com/TahirSher/GenAI_Lawyers_Guide/blob/main/bi-partite.pdf", # Add more document links as needed ] def fetch_pdf_text_from_github(urls): text = "" for url in urls: response = requests.get(url) if response.status_code == 200: pdf_file = BytesIO(response.content) pdf_reader = PdfReader(pdf_file) for page in pdf_reader.pages: page_text = page.extract_text() if page_text: text += page_text else: st.error(f"Failed to fetch PDF from URL: {url}") return text @st.cache_data def get_text_chunks(text): text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) chunks = text_splitter.split_text(text) return chunks @st.cache_resource def load_or_create_vector_store(text_chunks): embeddings = FAISS.get_default_embeddings() vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) return vector_store def generate_answer(user_question, context_text): # Format the input message for the pipeline messages = [ {"role": "user", "content": f"Context: {context_text}\nQuestion: {user_question}"} ] # Generate response using the pipeline response = pipe(messages, max_length=250, do_sample=True) return response[0]['generated_text'][:250] # Limit response to 250 characters def user_input(user_question, vector_store): docs = vector_store.similarity_search(user_question) context_text = " ".join([doc.page_content for doc in docs]) return generate_answer(user_question, context_text) def main(): st.set_page_config(page_title="RAG-based PDF Chat", layout="centered", page_icon="📄") st.title("📄 Query PDF Documents on GitHub") # Load documents from GitHub raw_text = fetch_pdf_text_from_github(PDF_URLS) text_chunks = get_text_chunks(raw_text) vector_store = load_or_create_vector_store(text_chunks) # User question input user_question = st.text_input("Ask a Question:", placeholder="Type your question here...") if st.button("Get Response"): if not user_question: st.warning("Please enter a question before submitting.") else: with st.spinner("Generating response..."): answer = user_input(user_question, vector_store) st.markdown(f"**🤖 AI:** {answer}") if __name__ == "__main__": main()