import cv2 import torch import numpy as np from PIL import Image from torchvision import transforms from segment_anything import SamAutomaticMaskGenerator, sam_model_registry import matplotlib.pyplot as plt import gradio as gr # import segmentation_models_pytorch as smp ##set the device to cuda for sam model # device = torch.device('cuda') # image= cv2.imread('image_4.png', cv2.IMREAD_COLOR) def get_masks( image, model_type): print(image) # image_pil = Image.fromarray(image.astype('uint8'), 'RGB') # print(image_pil) if model_type == 'vit_h': sam = sam_model_registry["vit_h"](checkpoint="sam_vit_h_4b8939.pth") if model_type == 'vit_b': sam = sam_model_registry["vit_b"](checkpoint="sam_vit_b_01ec64.pth") if model_type == 'vit_l': sam = sam_model_registry["vit_l"](checkpoint="sam_vit_l_0b3195.pth") else: sam= sam_model_registry["vit_l"](checkpoint="sam_vit_l_0b3195.pth") # print(image.shape) #set the device to cuda for sam model # sam.to(device= device) mask_generator = SamAutomaticMaskGenerator(sam) masks = mask_generator.generate(image) composite_image = np.zeros_like(image) colors = plt.cm.jet(np.linspace(0, 1, len(masks))) # Generate distinct colors for i, mask_data in enumerate(masks): mask = mask_data['segmentation'] color = colors[i] composite_image[mask] = (color[:3] * 255).astype(np.uint8) # Apply color to mask print(composite_image.shape, image.shape) # Combine original image with the composite mask image overlayed_image = (composite_image * 0.5 + torch.from_numpy(image).resize(738, 1200, 3).cpu().numpy() * 0.5).astype(np.uint8) return overlayed_image iface = gr.Interface( fn=get_masks, inputs=["image", gr.components.Dropdown(choices=['vit_h', 'vit_b', 'vit_l'], label="Model Type")], outputs="image", title="SAM Model Segmentation and Classification", description="Upload an image, select a model type, and receive the segmented and classified parts." ) iface.launch()