import streamlit as st import os import soundfile as sf import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "distil-whisper/distil-large-v2" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, ) def transcribe_audio(audio_file): # Save the audio file to a temporary file with open("temp_audio_file", "wb") as f: f.write(audio_file.getbuffer()) # Transcribe the audio file using the Whisper model result = pipe("temp_audio_file") return result["text"] # Streamlit app def main(): st.title('BETTER TRANSCRIBER') # Audio file uploader uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "m4a", "ogg", "flac"]) if uploaded_file is not None: # Show a button to start the transcription process if st.button('Transcribe'): # Show a message while transcribing with st.spinner('Transcribing...'): text = transcribe_audio(uploaded_file) # Show the transcription st.subheader('Transcription:') st.write(text) else: st.write('Upload an audio file to get started.') if __name__ == "__main__": main()