import gradio as gr lpmc_client = gr.load("seungheondoh/LP-Music-Caps-demo", src="spaces") from gradio_client import Client client = Client("https://ysharma-explore-llamav2-with-tgi.hf.space/") from diffusers import DiffusionPipeline import torch pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16") pipe.to("cuda") # if using torch < 2.0 # pipe.enable_xformers_memory_efficient_attention() from pydub import AudioSegment def cut_audio(input_path, output_path, max_duration=30000): audio = AudioSegment.from_file(input_path) if len(audio) > max_duration: audio = audio[:max_duration] audio.export(output_path, format="mp3") return output_path def infer(audio_file): truncated_audio = cut_audio(audio_file, "trunc_audio.mp3") cap_result = lpmc_client( truncated_audio, # str (filepath or URL to file) in 'audio_path' Audio component api_name="predict" ) print(cap_result) summarize_q = f""" I'll give you a list of music descriptions. Create a summary reflecting the musical ambiance. Do not processs each segment, but provide a summary for the whole instead. Here's the list: {cap_result} """ summary_result = client.predict( summarize_q, # str in 'Message' Textbox component api_name="/chat_1" ) print(f"SUMMARY: {summary_result}") llama_q = f""" I'll give you music description, then i want you to provide an illustrative image description that would fit well with the music. Answer with only one image description. Never do lists. Here's the music description : {summary_result} """ result = client.predict( llama_q, # str in 'Message' Textbox component api_name="/chat_1" ) print(result) images = pipe(prompt=result).images[0] return cap_result, result, images with gr.Blocks() as demo: with gr.Column(elem_id="col-container"): audio_input = gr.Audio(type="filepath", source="upload") infer_btn = gr.Button("Generate") lpmc_cap = gr.Textbox(label="Lp Music Caps caption") llama_trans_cap = gr.Textbox(label="Llama translation") img_result = gr.Video(label="Result") infer_btn.click(fn=infer, inputs=[audio_input], outputs=[lpmc_cap, llama_trans_cap, img_result]) demo.queue().launch()