Spaces:
Runtime error
Runtime error
import argparse | |
import collections | |
import torch | |
def convert_sbert_transformer_encoder_from_huggingface_to_tencentpretrain(input_model, output_model, layers_num): | |
for i in range(layers_num): | |
for j in range(2): | |
output_model["encoder.encoder_" + str(j) + ".transformer." + str(i) + ".self_attn.linear_layers.0.weight"] = \ | |
input_model["encoder.layer." + str(i) + ".attention.self.query.weight"] | |
output_model["encoder.encoder_" + str(j) + ".transformer." + str(i) + ".self_attn.linear_layers.0.bias"] = \ | |
input_model["encoder.layer." + str(i) + ".attention.self.query.bias"] | |
output_model["encoder.encoder_" + str(j) + ".transformer." + str(i) + ".self_attn.linear_layers.1.weight"] = \ | |
input_model["encoder.layer." + str(i) + ".attention.self.key.weight"] | |
output_model["encoder.encoder_" + str(j) + ".transformer." + str(i) + ".self_attn.linear_layers.1.bias"] = \ | |
input_model["encoder.layer." + str(i) + ".attention.self.key.bias"] | |
output_model["encoder.encoder_" + str(j) + ".transformer." + str(i) + ".self_attn.linear_layers.2.weight"] = \ | |
input_model["encoder.layer." + str(i) + ".attention.self.value.weight"] | |
output_model["encoder.encoder_" + str(j) + ".transformer." + str(i) + ".self_attn.linear_layers.2.bias"] = \ | |
input_model["encoder.layer." + str(i) + ".attention.self.value.bias"] | |
output_model["encoder.encoder_" + str(j) + ".transformer." + str(i) + ".self_attn.final_linear.weight"] = \ | |
input_model["encoder.layer." + str(i) + ".attention.output.dense.weight"] | |
output_model["encoder.encoder_" + str(j) + ".transformer." + str(i) + ".self_attn.final_linear.bias"] = \ | |
input_model["encoder.layer." + str(i) + ".attention.output.dense.bias"] | |
output_model["encoder.encoder_" + str(j) + ".transformer." + str(i) + ".layer_norm_1.gamma"] = \ | |
input_model["encoder.layer." + str(i) + ".attention.output.LayerNorm.weight"] | |
output_model["encoder.encoder_" + str(j) + ".transformer." + str(i) + ".layer_norm_1.beta"] = \ | |
input_model["encoder.layer." + str(i) + ".attention.output.LayerNorm.bias"] | |
output_model["encoder.encoder_" + str(j) + ".transformer." + str(i) + ".feed_forward.linear_1.weight"] = \ | |
input_model["encoder.layer." + str(i) + ".intermediate.dense.weight"] | |
output_model["encoder.encoder_" + str(j) + ".transformer." + str(i) + ".feed_forward.linear_1.bias"] = \ | |
input_model["encoder.layer." + str(i) + ".intermediate.dense.bias"] | |
output_model["encoder.encoder_" + str(j) + ".transformer." + str(i) + ".feed_forward.linear_2.weight"] = \ | |
input_model["encoder.layer." + str(i) + ".output.dense.weight"] | |
output_model["encoder.encoder_" + str(j) + ".transformer." + str(i) + ".feed_forward.linear_2.bias"] = \ | |
input_model["encoder.layer." + str(i) + ".output.dense.bias"] | |
output_model["encoder.encoder_" + str(j) + ".transformer." + str(i) + ".layer_norm_2.gamma"] = \ | |
input_model["encoder.layer." + str(i) + ".output.LayerNorm.weight"] | |
output_model["encoder.encoder_" + str(j) + ".transformer." + str(i) + ".layer_norm_2.beta"] = \ | |
input_model["encoder.layer." + str(i) + ".output.LayerNorm.bias"] | |
def main(): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
parser.add_argument("--input_model_path", type=str, default="models/input_model.bin", | |
help=".") | |
parser.add_argument("--output_model_path", type=str, default="models/output_model.bin", | |
help=".") | |
parser.add_argument("--layers_num", type=int, default=12, help=".") | |
args = parser.parse_args() | |
input_model = torch.load(args.input_model_path, map_location='cpu') | |
output_model = collections.OrderedDict() | |
for i in range(2): | |
output_model["embedding.embedding_" + str(i) + ".word.embedding.weight"] = \ | |
input_model["embeddings.word_embeddings.weight"] | |
output_model["embedding.embedding_" + str(i) + ".pos.embedding.weight"] = \ | |
input_model["embeddings.position_embeddings.weight"] | |
output_model["embedding.embedding_" + str(i) + ".seg.embedding.weight"] = \ | |
torch.cat((torch.Tensor([[0]*input_model["embeddings.token_type_embeddings.weight"].size()[1]]), | |
input_model["embeddings.token_type_embeddings.weight"]), dim=0) | |
output_model["embedding.embedding_" + str(i) + ".layer_norm.gamma"] = \ | |
input_model["embeddings.LayerNorm.weight"] | |
output_model["embedding.embedding_" + str(i) + ".layer_norm.beta"] = \ | |
input_model["embeddings.LayerNorm.bias"] | |
convert_sbert_transformer_encoder_from_huggingface_to_tencentpretrain(input_model, output_model, args.layers_num) | |
torch.save(output_model, args.output_model_path) | |
if __name__ == "__main__": | |
main() | |