Spaces:
Runtime error
Runtime error
""" | |
This script provides an example to use DeepSpeed for classification. | |
""" | |
import sys | |
import os | |
import random | |
import argparse | |
import torch | |
import torch.nn as nn | |
import deepspeed | |
import torch.distributed as dist | |
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
sys.path.append(tencentpretrain_dir) | |
from tencentpretrain.opts import deepspeed_opts | |
from finetune.run_classifier import * | |
def read_dataset(args, path, split): | |
dataset, columns = [], {} | |
if split: | |
for i in range(args.world_size): | |
dataset.append([]) | |
index = 0 | |
with open(path, mode="r", encoding="utf-8") as f: | |
for line_id, line in enumerate(f): | |
if line_id == 0: | |
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")): | |
columns[column_name] = i | |
continue | |
line = line.rstrip("\r\n").split("\t") | |
tgt = int(line[columns["label"]]) | |
if args.soft_targets and "logits" in columns.keys(): | |
soft_tgt = [float(value) for value in line[columns["logits"]].split(" ")] | |
if "text_b" not in columns: # Sentence classification. | |
text_a = line[columns["text_a"]] | |
src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN]) | |
seg = [1] * len(src) | |
else: # Sentence-pair classification. | |
text_a, text_b = line[columns["text_a"]], line[columns["text_b"]] | |
src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN]) | |
src_b = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_b) + [SEP_TOKEN]) | |
src = src_a + src_b | |
seg = [1] * len(src_a) + [2] * len(src_b) | |
if len(src) > args.seq_length: | |
src = src[: args.seq_length] | |
seg = seg[: args.seq_length] | |
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0] | |
while len(src) < args.seq_length: | |
src.append(PAD_ID) | |
seg.append(0) | |
if split: | |
if args.soft_targets and "logits" in columns.keys(): | |
dataset[index].append((src, tgt, seg, soft_tgt)) | |
else: | |
dataset[index].append((src, tgt, seg)) | |
index += 1 | |
if index == args.world_size: | |
index = 0 | |
else: | |
if args.soft_targets and "logits" in columns.keys(): | |
dataset.append((src, tgt, seg, soft_tgt)) | |
else: | |
dataset.append((src, tgt, seg)) | |
if split: | |
max_data_num_rank_index = 0 | |
max_data_num = len(dataset[0]) | |
for i in range(args.world_size): | |
if len(dataset[i]) > max_data_num: | |
max_data_num_rank_index = i | |
max_data_num = len(dataset[i]) | |
for i in range(args.world_size): | |
if len(dataset[i]) < max_data_num: | |
dataset[i].append(dataset[max_data_num_rank_index][-1]) | |
return dataset | |
def train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch, soft_tgt_batch=None): | |
model.zero_grad() | |
src_batch = src_batch.to(args.device) | |
tgt_batch = tgt_batch.to(args.device) | |
seg_batch = seg_batch.to(args.device) | |
if soft_tgt_batch is not None: | |
soft_tgt_batch = soft_tgt_batch.to(args.device) | |
loss, _ = model(src_batch, tgt_batch, seg_batch, soft_tgt_batch) | |
if torch.cuda.device_count() > 1: | |
loss = torch.mean(loss) | |
model.backward(loss) | |
model.step() | |
return loss | |
def main(): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
finetune_opts(parser) | |
parser.add_argument("--world_size", type=int, default=1, | |
help="Total number of processes (GPUs) for training.") | |
tokenizer_opts(parser) | |
parser.add_argument("--soft_targets", action='store_true', | |
help="Train model with logits.") | |
parser.add_argument("--soft_alpha", type=float, default=0.5, | |
help="Weight of the soft targets loss.") | |
deepspeed_opts(parser) | |
args = parser.parse_args() | |
# Load the hyperparameters from the config file. | |
args = load_hyperparam(args) | |
set_seed(args.seed) | |
# Count the number of labels. | |
args.labels_num = count_labels_num(args.train_path) | |
# Build tokenizer. | |
args.tokenizer = str2tokenizer[args.tokenizer](args) | |
# Build classification model. | |
model = Classifier(args) | |
# Load or initialize parameters. | |
load_or_initialize_parameters(args, model) | |
# Get logger. | |
args.logger = init_logger(args) | |
param_optimizer = list(model.named_parameters()) | |
no_decay = ["bias", "gamma", "beta"] | |
optimizer_grouped_parameters = [ | |
{"params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], "weight_decay": 0.01}, | |
{"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, | |
] | |
deepspeed.init_distributed() | |
rank = dist.get_rank() | |
args.rank = rank | |
trainset = read_dataset(args, args.train_path, split=True)[args.rank] | |
random.shuffle(trainset) | |
instances_num = len(trainset) | |
batch_size = args.batch_size | |
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1 | |
custom_optimizer, custom_scheduler = build_optimizer(args, model) | |
model, optimizer, _, scheduler = deepspeed.initialize( | |
model=model, | |
model_parameters=optimizer_grouped_parameters, | |
args=args, | |
optimizer=custom_optimizer, | |
lr_scheduler=custom_scheduler, | |
mpu=None, | |
dist_init_required=False) | |
src = torch.LongTensor([example[0] for example in trainset]) | |
tgt = torch.LongTensor([example[1] for example in trainset]) | |
seg = torch.LongTensor([example[2] for example in trainset]) | |
if args.soft_targets: | |
soft_tgt = torch.FloatTensor([example[3] for example in trainset]) | |
else: | |
soft_tgt = None | |
args.model = model | |
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
total_loss, result, best_result, best_epoch = 0.0, 0.0, 0.0, 0 | |
result_tensor = torch.tensor(result).to(args.device) | |
if args.rank == 0: | |
args.logger.info("Batch size: {}".format(batch_size)) | |
args.logger.info("The number of training instances: {}".format(instances_num)) | |
args.logger.info("Start training.") | |
for epoch in range(1, args.epochs_num + 1): | |
model.train() | |
for i, (src_batch, tgt_batch, seg_batch, soft_tgt_batch) in enumerate(batch_loader(batch_size, src, tgt, seg, soft_tgt)): | |
loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch, soft_tgt_batch) | |
total_loss += loss.item() | |
if (i + 1) % args.report_steps == 0 and args.rank == 0: | |
args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps)) | |
total_loss = 0.0 | |
if args.rank == 0: | |
result = evaluate(args, read_dataset(args, args.dev_path, split=False)) | |
result_tensor = torch.tensor(result[0]).to(args.device) | |
dist.broadcast(result_tensor, 0, async_op=False) | |
if result_tensor.float() >= best_result: | |
best_result = result_tensor.float().item() | |
best_epoch = epoch | |
model.save_checkpoint(args.output_model_path, str(epoch)) | |
# Evaluation phase. | |
if args.test_path is not None and args.rank == 0: | |
args.logger.info("Test set evaluation.") | |
model.load_checkpoint(args.output_model_path, str(best_epoch)) | |
evaluate(args, read_dataset(args, args.test_path, split=False), True) | |
if __name__ == "__main__": | |
main() | |