Spaces:
Runtime error
Runtime error
File size: 18,476 Bytes
7900c16 4fd3923 7900c16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
import gradio as gr
import numpy as np
import torch
import re
from PIL import Image
from tqdm import tqdm
from train.scripts.generate_lm_multiple import gen_sequence, build_visorgpt
from utils.seq2coord import gen_cond_mask
from visor_gligen.gligen_inference_box import gligen_infer, build_gligen_model
from visor_controlnet.gradio_pose2image_v2 import control_infer, build_control_model, build_controlv11_model
# init models
visorgpt_config_path = 'train/models/gpt2/config.json'
visorgpt_model_path = 'demo/ckpts/visorgpt/visorgpt_dagger_ta_tb.pt'
visorgpt_vocab_path = 'train/models/google_uncased_en_coord_vocab.txt'
# control_model_path = 'demo/ckpts/controlnet/control_sd15_openpose.pth'
control_model_path = 'demo/ckpts/controlnet/control_v11p_sd15_openpose.pth' # v1.1
control_sd_path = 'demo/ckpts/controlnet/v1-5-pruned-emaonly.safetensors'
control_model_config = 'demo/ckpts/controlnet/cldm_v15.yaml'
gligen_model_path = 'demo/ckpts/gligen/diffusion_pytorch_model_box.bin'
visorgpt_args, visorgpt_model = build_visorgpt(model_config=visorgpt_config_path,
model_path=visorgpt_model_path,
vocab_path=visorgpt_vocab_path)
control_model, ddim_sampler = build_controlv11_model(model_path=control_model_path,
sd_path=control_sd_path,
config_path=control_model_config)
# build gligen model
g_model, g_autoencoder, g_text_encoder, g_diffusion, \
g_config, g_grounding_tokenizer_input = build_gligen_model(ckpt=gligen_model_path)
# maximum number of instances
max_num_keypoint = 16
max_num_bbox = 16
max_num_mask = 8
def generate_sequence(gen_type,
data_type,
instance_size,
num_instance,
object_name_inbox):
ctn = True
if gen_type == 'key point':
num_keypoint = 18
if num_instance > max_num_keypoint:
num_instance = max_num_keypoint
seq_prompt = '; '.join([gen_type, data_type, instance_size, str(num_instance), str(num_keypoint)]) + ' ; [person'
elif gen_type == 'box' or gen_type == 'mask':
if not object_name_inbox.strip():
if gen_type == 'mask':
object_name_inbox = "bottle; cup"
else:
if data_type == 'object centric':
object_name_inbox = "great white shark"
else:
object_name_inbox = "person; frisbee"
num_keypoint = 0
if gen_type == 'mask':
if num_instance > max_num_mask:
num_instance = max_num_mask
if gen_type == 'box':
if num_instance > max_num_bbox:
num_instance = max_num_bbox
if data_type == 'object centric':
num_instance = 1
objects = ', '.join(object_name_inbox.strip().split(";"))
seq_prompt = '; '.join([gen_type, data_type, instance_size,
str(num_instance), str(num_keypoint)]) + '; ' + objects
if len(object_name_inbox.split(';')) > num_instance:
return {
raw_sequence: gr.update(
value="The umber of category names should be less than the number of instances, please try again :)",
visible=True)
}
print("input prompt: \n", seq_prompt)
sequence = gen_sequence(visorgpt_args, visorgpt_model, seq_prompt)
assert isinstance(sequence, list)
try:
cond_mask, cond_json = gen_cond_mask(sequence, ctn)
if gen_type == 'key point':
ori_sequence = cond_json[2]['sequences'][0][0] + '[SEP]'
elif gen_type == 'box':
ori_sequence = cond_json[0]['sequences'][0][0] + '[SEP]'
elif gen_type == 'mask':
ori_sequence = cond_json[1]['sequences'][0][0] + '[SEP]'
except:
cond_mask, cond_json = gen_cond_mask(sequence, not ctn)
if gen_type == 'key point':
ori_sequence = cond_json[2]['sequences'][0][0] + '[SEP]'
elif gen_type == 'box':
ori_sequence = cond_json[0]['sequences'][0][0] + '[SEP]'
elif gen_type == 'mask':
ori_sequence = cond_json[1]['sequences'][0][0] + '[SEP]'
ret_img = Image.fromarray(cond_mask)
if not gen_type == 'mask':
return {
result_gallery: [ret_img],
raw_sequence: gr.update(value=ori_sequence, visible=True),
images_button: gr.update(visible=True),
text_container: cond_json,
sequence_container: ori_sequence
}
else:
return {
result_gallery: [ret_img],
raw_sequence: gr.update(value=ori_sequence, visible=True),
images_button: gr.update(visible=False),
text_container: cond_json,
sequence_container: ori_sequence
}
def add_contents(gen_type,
data_type,
instance_size,
num_instance,
object_name_inbox,
num_continuous_gen,
global_seq):
ctn = True
if gen_type == 'key point':
num_keypoint = 18
seq_prompt = '; '.join([gen_type, data_type, instance_size, str(num_instance), str(num_keypoint)]) + ' ; [person'
if num_continuous_gen:
ctn = True
cur_instance = int(global_seq.split(';')[3].strip())
new_number = cur_instance + num_continuous_gen
if new_number > max_num_keypoint:
new_number = max_num_keypoint
# prompt type a
if global_seq.split(';')[5].find('[') == -1:
global_seq = global_seq.replace('[CLS]', '').replace('[SEP]', '')
objects = re.findall(re.compile(r'[\[](.*?)[]]', re.S), global_seq)
objects = ' '.join(['[ person' + x + ']' for x in objects])
seq_prompt = '; '.join([gen_type, data_type, instance_size, str(new_number), str(num_keypoint), objects])
# prompt type b
else:
global_seq = global_seq.replace('[CLS]', '').replace('[SEP]', '')
seq_list = global_seq.split(';')
seq_list[3] = str(new_number)
seq_prompt = ';'.join(seq_list)
elif gen_type == 'box' or gen_type == 'mask':
num_keypoint = 0
if data_type == 'object centric':
num_instance = 1
objects = ', '.join(object_name_inbox.strip().split(";"))
seq_prompt = '; '.join([gen_type, data_type, instance_size,
str(num_instance), str(num_keypoint)]) + '; ' + objects
if len(object_name_inbox.split(';')) > num_instance:
return {
raw_sequence: gr.update(value=f"The umber of category names should be less than the number of instances, please try again :)", visible=True)
}
if num_continuous_gen:
cur_instance = int(global_seq.split(';')[3].strip())
new_number = cur_instance + num_continuous_gen
if gen_type == 'mask':
if new_number > max_num_mask:
new_number = max_num_mask
if gen_type == 'box':
if new_number > max_num_bbox:
new_number = max_num_bbox
# prompt type a
if global_seq.split(';')[5].find('[') == -1:
global_seq = global_seq.replace('[CLS]', '').replace('[SEP]', '')
coords = re.findall(re.compile(r'[\[](.*?)[]]', re.S), global_seq)
objects = global_seq.split(';')[5].split(',')
objects = ' '.join(['[ ' + objects[i] + coords[i] + ']' for i in range(len(coords))])
seq_prompt = '; '.join([gen_type, data_type, instance_size, str(new_number), str(num_keypoint), objects])
# prompt type b
else:
global_seq = global_seq.replace('[CLS]', '').replace('[SEP]', '')
seq_list = global_seq.split(';')
seq_list[3] = str(new_number)
seq_prompt = ';'.join(seq_list)
# import ipdb;ipdb.set_trace()
print("input prompt: \n", seq_prompt)
with torch.no_grad():
sequence = gen_sequence(visorgpt_args, visorgpt_model, seq_prompt)
torch.cuda.empty_cache()
assert isinstance(sequence, list)
try:
cond_mask, cond_json = gen_cond_mask(sequence, ctn)
if gen_type == 'key point':
ori_sequence = cond_json[2]['sequences'][0][0] + '[SEP]'
elif gen_type == 'box':
ori_sequence = cond_json[0]['sequences'][0][0] + '[SEP]'
elif gen_type == 'mask':
ori_sequence = cond_json[1]['sequences'][0][0] + '[SEP]'
except:
cond_mask, cond_json = gen_cond_mask(sequence, not ctn)
if gen_type == 'key point':
ori_sequence = cond_json[2]['sequences'][0][0] + '[SEP]'
elif gen_type == 'box':
ori_sequence = cond_json[0]['sequences'][0][0] + '[SEP]'
elif gen_type == 'mask':
ori_sequence = cond_json[1]['sequences'][0][0] + '[SEP]'
ret_img = Image.fromarray(cond_mask)
if not gen_type == 'mask':
return {
result_gallery: [ret_img],
raw_sequence: gr.update(value=ori_sequence, visible=True),
images_button: gr.update(visible=True),
text_container: cond_json,
sequence_container: ori_sequence
}
else:
return {
result_gallery: [ret_img],
raw_sequence: gr.update(value=ori_sequence, visible=True),
images_button: gr.update(visible=False),
text_container: cond_json,
sequence_container: ori_sequence
}
def generate_images(gen_type,
num_samples,
ddim_steps,
object_prompt,
seed,
global_text,
global_seq):
if gen_type == 'key point':
data = global_text[2]['keypoints']
idx = np.arange(len(data))
split_idx = list(np.array_split(idx, 1)[0])
for idx in tqdm(split_idx):
item = data[idx]
keypoint_list = []
for ins in item:
kv = list(ins.items())[0]
keypoint = (np.array(kv[1])).tolist()
keypoint_list.append(keypoint)
with torch.no_grad():
ret_img = control_infer(model=control_model,
ddim_sampler=ddim_sampler,
keypoint_list=keypoint_list,
prompt=object_prompt.strip(),
num_samples=num_samples,
ddim_steps=ddim_steps,
seed=seed)
torch.cuda.empty_cache()
elif gen_type == 'box':
data = global_text[0]['bboxes']
with torch.no_grad():
ret_img = gligen_infer(model=g_model,
autoencoder=g_autoencoder,
text_encoder=g_text_encoder,
diffusion=g_diffusion,
config=g_config,
grounding_tokenizer_input=g_grounding_tokenizer_input,
context_prompt=object_prompt.strip(),
bbox_lists=data,
ddim_steps=ddim_steps,
batch_size=num_samples,
seed=seed)
torch.cuda.empty_cache()
if not gen_type == 'mask':
return {
result_gallery: ret_img,
text_container: global_text,
sequence_container: global_seq
}
else:
return {
raw_sequence: "sequence to mask is not supported yet :)",
text_container: global_text,
sequence_container: global_seq
}
def object_name_inbox_fn(gen_type):
if gen_type == 'key point':
return {
object_name_inbox: gr.update(visible=False),
data_type: gr.update(choices=['multiple instances']),
images_button: gr.update(value='Synthesize images using ControlNet'),
ddim_steps: gr.update(value=20),
object_prompt: gr.update(placeholder='in suit'),
num_instance: gr.update(visible=True, minimum=1, maximum=16, value=2, step=1),
sequence_container: None
}
elif gen_type == 'box':
return {
object_name_inbox: gr.update(visible=True, value='person; frisbee'),
data_type: gr.update(choices=['multiple instances', 'object centric']),
images_button: gr.update(value='Synthesize images using GLIGEN'),
ddim_steps: gr.update(value=50),
object_prompt: gr.update(placeholder='man and frisbee'),
num_instance: gr.update(visible=True, minimum=1, maximum=16, value=2, step=1),
sequence_container: None
}
elif gen_type == 'mask':
return {
object_name_inbox: gr.update(visible=True,
label="MS COCO categories to be generated (separated by semicolon)", value='bottle; cup'),
data_type: gr.update(choices=['multiple instances']),
images_button: gr.update(value='Synthesize images using GLIGEN'),
ddim_steps: gr.update(value=50),
object_prompt: gr.update(placeholder='bottle and cup'),
num_instance: gr.update(visible=True, minimum=1, maximum=8, value=2, step=1),
sequence_container: None
}
def instance_type_change_fn(data_type):
if data_type == 'multiple instances':
return {
md_title: gr.update(visible=True),
num_continuous_gen: gr.update(visible=True),
continuous_btn: gr.update(visible=True),
object_name_inbox: gr.update(label="MS COCO categories to be generated (separated by semicolon)", value='person; frisbee'),
object_prompt: gr.update(placeholder='man and frisbee'),
num_instance: gr.update(visible=True, minimum=1, maximum=16, value=2, step=1),
}
elif data_type == 'object centric':
return {
md_title: gr.update(visible=False),
num_continuous_gen: gr.update(visible=False),
continuous_btn: gr.update(visible=False),
object_name_inbox: gr.update(label="ImageNet-1K categories to be generated", value='great white shark'),
object_prompt: gr.update(placeholder='great white shark'),
num_instance: gr.update(visible=False, value=1),
}
block = gr.Blocks()
with block:
text_container = gr.State()
sequence_container = gr.State()
gr.Markdown('<div align=center> <img src="file/visorgpt_title_all.jpg" width = "100%" height = "100%" /> </div>')
with gr.Row():
with gr.Column():
gr.Markdown("### Params to generate sequences")
gen_type = gr.inputs.Dropdown(choices=['key point', 'box', 'mask'], type='value', default='key point', label='Anotation Type')
data_type = gr.inputs.Dropdown(choices=['multiple instances'], type='value', default='multiple instances', label='Data Type')
instance_size = gr.inputs.Dropdown(choices=['small', 'medium', 'large'], type='value', default='large', label='Instance Size')
num_instance = gr.Slider(label="Number of instances per image", minimum=1, maximum=16, value=2, step=1)
object_name_inbox = gr.Textbox(label="MS COCO categories to be generated (separated by semicolon)", placeholder="person; frisbee", visible=False)
sequence_button = gr.Button(value="Customize sequential output")
md_title = gr.Markdown("### Continuous generation (Optional)")
num_continuous_gen = gr.Slider(label="Add instances to the current scene", minimum=1, maximum=16, value=1, step=1)
continuous_btn = gr.Button(value="Add instances to the current scene")
gr.Markdown("### Params to synthesize images")
object_prompt = gr.Textbox(label="Context Prompt", placeholder="in suit", visible=True)
num_samples = gr.Slider(label="Batch Size", minimum=1, maximum=36, value=1, step=1)
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
images_button = gr.Button(value="Synthesize images using ControlNet", visible=False)
with gr.Column():
raw_sequence = gr.Textbox(label="Raw Sequence", visible=False)
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto', preview=True)
gen_type.change(object_name_inbox_fn, inputs=[gen_type],
outputs=[object_name_inbox, data_type, images_button, ddim_steps, object_prompt, num_instance, sequence_container])
data_type.change(instance_type_change_fn, inputs=[data_type],
outputs=[md_title, num_continuous_gen, continuous_btn, object_name_inbox, object_prompt, num_instance])
ips = [gen_type, data_type, instance_size, num_instance, object_name_inbox]
sequence_button.click(fn=generate_sequence, inputs=ips, outputs=[result_gallery, raw_sequence, images_button, text_container, sequence_container])
ips = [gen_type, data_type, instance_size, num_instance, object_name_inbox, num_continuous_gen, sequence_container]
continuous_btn.click(fn=add_contents, inputs=ips, outputs=[result_gallery, raw_sequence, images_button, text_container, sequence_container])
ips = [gen_type, num_samples, ddim_steps, object_prompt, seed, text_container, sequence_container]
images_button.click(fn=generate_images, inputs=ips, outputs=[result_gallery, raw_sequence, text_container, sequence_container])
block.launch(server_name='0.0.0.0', server_port=10086, debug=False, share=False)
|