import gradio as gr from transformers import AutoTokenizer, MT5ForConditionalGeneration # Load tokenizer and model checkpoint = "syubraj/romaneng2nep_v2" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = MT5ForConditionalGeneration.from_pretrained(checkpoint) # Set max sequence length max_seq_len = 20 # Define the translation function def translate(text): # Tokenize the input text with a max length of 20 inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=max_seq_len) # Generate translation translated = model.generate(**inputs) # Decode the translated tokens back to text translated_text = tokenizer.decode(translated[0], skip_special_tokens=True) return translated_text # Gradio interface iface = gr.Interface( fn=translate, # function to use for inference inputs="text", # input type outputs="text", # output type title="Romanized English to Nepali Transliterator", description="Translate Romanized English text into Nepali.", examples=[["ahile"],["prakriti"], ["mahasagar"], ["pradarshan"],["khutkela"], ["nandan"], ["khola"]] ) # Launch the Gradio app iface.launch()