import os from pathlib import Path import gradio as gr from llama_index import VectorStoreIndex, StorageContext, download_loader, load_index_from_storage dataFiles = ["RetroJune", "Mattel_06_23_Open_Gen", "mattel_06_23_gen", "OnCall", "RetroMay", "RetroApril", "RetroMarch", "Snowflake", "Datadog", "Databricks", "SplunkProducts", "SplunkEnterprise"] cache = {} def index_file(filePath, index_root): csv_file = f'./raw/{filePath}.csv' pdf_file = f'./raw/{filePath}.pdf' documents = None storage_context = StorageContext.from_defaults() if os.path.exists(csv_file): PandasCSVReader = download_loader("PandasCSVReader") loader = PandasCSVReader() documents = loader.load_data(file=csv_file) print(f"Loading from CSV {csv_file}") elif os.path.exists(pdf_file): PDFReader = download_loader("PDFReader") loader = PDFReader() documents = loader.load_data(file=Path(pdf_file)) # PyMuPDFReader = download_loader("PyMuPDFReader") # loader = PyMuPDFReader() # documents = loader.load(file_path=Path(pdf_file), metadata=False) print(f"Loading from PDF {pdf_file}") index = VectorStoreIndex.from_documents(documents=documents, storage_context=storage_context) save_location = f"{index_root}/{filePath}" if not os.path.exists(save_location): os.makedirs(save_location) storage_context.persist(save_location) return index def loadData(): """ Load indices from disk for improved performance """ index_root = "./index_v2" for file in dataFiles: index_file_path = f'{index_root}/{file}' index = None if not os.path.exists(index_file_path): print("Creating index " + index_file_path) index = index_file(file, index_root) else: print("Loading from existing index " + index_file_path) storage_context = StorageContext.from_defaults(persist_dir=index_file_path) index = load_index_from_storage(storage_context) cache[file] = index def chatbot(indexName, input_text): """ Chatbot function that takes in a prompt and returns a response """ index = cache[indexName] response = index.as_query_engine().query(input_text) return response.response loadData() iface = gr.Interface(fn=chatbot, inputs=[ gr.Dropdown(dataFiles, type="value", value="Mattel_06_23_Open_Gen", label="Select Pulse Data"), gr.Textbox(lines=7, label="Ask any question", placeholder='What is the summary?')], outputs="text", title="NLP Demo for Chat Interface") if 'LOGIN_PASS' in os.environ: iface.launch(auth=('axiamatic', os.environ['LOGIN_PASS']), auth_message='For access, please check my Slack profile or contact me in Slack.', share=False) else: iface.launch(share=False)