from PIL import Image import torch import torch.nn.functional as F import numpy as np from romatch.utils.utils import tensor_to_pil from romatch import roma_outdoor device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if __name__ == "__main__": from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument("--im_A_path", default="assets/toronto_A.jpg", type=str) parser.add_argument("--im_B_path", default="assets/toronto_B.jpg", type=str) parser.add_argument("--save_path", default="demo/roma_warp_toronto.jpg", type=str) args, _ = parser.parse_known_args() im1_path = args.im_A_path im2_path = args.im_B_path save_path = args.save_path # Create model roma_model = roma_outdoor(device=device, coarse_res=560, upsample_res=(864, 1152)) H, W = roma_model.get_output_resolution() im1 = Image.open(im1_path).resize((W, H)) im2 = Image.open(im2_path).resize((W, H)) # Match warp, certainty = roma_model.match(im1_path, im2_path, device=device) # Sampling not needed, but can be done with model.sample(warp, certainty) x1 = (torch.tensor(np.array(im1)) / 255).to(device).permute(2, 0, 1) x2 = (torch.tensor(np.array(im2)) / 255).to(device).permute(2, 0, 1) im2_transfer_rgb = F.grid_sample( x2[None], warp[:,:W, 2:][None], mode="bilinear", align_corners=False )[0] im1_transfer_rgb = F.grid_sample( x1[None], warp[:, W:, :2][None], mode="bilinear", align_corners=False )[0] warp_im = torch.cat((im2_transfer_rgb,im1_transfer_rgb),dim=2) white_im = torch.ones((H,2*W),device=device) vis_im = certainty * warp_im + (1 - certainty) * white_im tensor_to_pil(vis_im, unnormalize=False).save(save_path)