Realcat
fix: lanet and r2d2
84efff1
raw
history blame
6.24 kB
# Copyright 2019-present NAVER Corp.
# CC BY-NC-SA 3.0
# Available only for non-commercial use
import os, pdb
from PIL import Image
import numpy as np
import torch
from tools import common
from tools.dataloader import norm_RGB
from nets.patchnet import *
def load_network(model_fn):
checkpoint = torch.load(model_fn)
print("\n>> Creating net = " + checkpoint["net"])
net = eval(checkpoint["net"])
nb_of_weights = common.model_size(net)
print(f" ( Model size: {nb_of_weights/1000:.0f}K parameters )")
# initialization
weights = checkpoint["state_dict"]
net.load_state_dict({k.replace("module.", ""): v for k, v in weights.items()})
return net.eval()
class NonMaxSuppression(torch.nn.Module):
def __init__(self, rel_thr=0.7, rep_thr=0.7):
nn.Module.__init__(self)
self.max_filter = torch.nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
self.rel_thr = rel_thr
self.rep_thr = rep_thr
def forward(self, reliability, repeatability, **kw):
assert len(reliability) == len(repeatability) == 1
reliability, repeatability = reliability[0], repeatability[0]
# local maxima
maxima = repeatability == self.max_filter(repeatability)
# remove low peaks
maxima *= repeatability >= self.rep_thr
maxima *= reliability >= self.rel_thr
return maxima.nonzero().t()[2:4]
def extract_multiscale(
net,
img,
detector,
scale_f=2**0.25,
min_scale=0.0,
max_scale=1,
min_size=256,
max_size=1024,
verbose=False,
):
old_bm = torch.backends.cudnn.benchmark
torch.backends.cudnn.benchmark = False # speedup
# extract keypoints at multiple scales
B, three, H, W = img.shape
assert B == 1 and three == 3, "should be a batch with a single RGB image"
assert max_scale <= 1
s = 1.0 # current scale factor
X, Y, S, C, Q, D = [], [], [], [], [], []
while s + 0.001 >= max(min_scale, min_size / max(H, W)):
if s - 0.001 <= min(max_scale, max_size / max(H, W)):
nh, nw = img.shape[2:]
if verbose:
print(f"extracting at scale x{s:.02f} = {nw:4d}x{nh:3d}")
# extract descriptors
with torch.no_grad():
res = net(imgs=[img])
# get output and reliability map
descriptors = res["descriptors"][0]
reliability = res["reliability"][0]
repeatability = res["repeatability"][0]
# normalize the reliability for nms
# extract maxima and descs
y, x = detector(**res) # nms
c = reliability[0, 0, y, x]
q = repeatability[0, 0, y, x]
d = descriptors[0, :, y, x].t()
n = d.shape[0]
# accumulate multiple scales
X.append(x.float() * W / nw)
Y.append(y.float() * H / nh)
S.append((32 / s) * torch.ones(n, dtype=torch.float32, device=d.device))
C.append(c)
Q.append(q)
D.append(d)
s /= scale_f
# down-scale the image for next iteration
nh, nw = round(H * s), round(W * s)
img = F.interpolate(img, (nh, nw), mode="bilinear", align_corners=False)
# restore value
torch.backends.cudnn.benchmark = old_bm
Y = torch.cat(Y)
X = torch.cat(X)
S = torch.cat(S) # scale
scores = torch.cat(C) * torch.cat(Q) # scores = reliability * repeatability
XYS = torch.stack([X, Y, S], dim=-1)
D = torch.cat(D)
return XYS, D, scores
def extract_keypoints(args):
iscuda = common.torch_set_gpu(args.gpu)
# load the network...
net = load_network(args.model)
if iscuda:
net = net.cuda()
# create the non-maxima detector
detector = NonMaxSuppression(
rel_thr=args.reliability_thr, rep_thr=args.repeatability_thr
)
while args.images:
img_path = args.images.pop(0)
if img_path.endswith(".txt"):
args.images = open(img_path).read().splitlines() + args.images
continue
print(f"\nExtracting features for {img_path}")
img = Image.open(img_path).convert("RGB")
W, H = img.size
img = norm_RGB(img)[None]
if iscuda:
img = img.cuda()
# extract keypoints/descriptors for a single image
xys, desc, scores = extract_multiscale(
net,
img,
detector,
scale_f=args.scale_f,
min_scale=args.min_scale,
max_scale=args.max_scale,
min_size=args.min_size,
max_size=args.max_size,
verbose=True,
)
xys = xys.cpu().numpy()
desc = desc.cpu().numpy()
scores = scores.cpu().numpy()
idxs = scores.argsort()[-args.top_k or None :]
outpath = img_path + "." + args.tag
print(f"Saving {len(idxs)} keypoints to {outpath}")
np.savez(
open(outpath, "wb"),
imsize=(W, H),
keypoints=xys[idxs],
descriptors=desc[idxs],
scores=scores[idxs],
)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser("Extract keypoints for a given image")
parser.add_argument("--model", type=str, required=True, help="model path")
parser.add_argument(
"--images", type=str, required=True, nargs="+", help="images / list"
)
parser.add_argument("--tag", type=str, default="r2d2", help="output file tag")
parser.add_argument("--top-k", type=int, default=5000, help="number of keypoints")
parser.add_argument("--scale-f", type=float, default=2**0.25)
parser.add_argument("--min-size", type=int, default=256)
parser.add_argument("--max-size", type=int, default=1024)
parser.add_argument("--min-scale", type=float, default=0)
parser.add_argument("--max-scale", type=float, default=1)
parser.add_argument("--reliability-thr", type=float, default=0.7)
parser.add_argument("--repeatability-thr", type=float, default=0.7)
parser.add_argument(
"--gpu", type=int, nargs="+", default=[0], help="use -1 for CPU"
)
args = parser.parse_args()
extract_keypoints(args)