Realcat
fix: eloftr
63f3cf2
raw
history blame
9.7 kB
# -*- coding: UTF-8 -*-
'''=================================================
@Project -> File pram -> train
@IDE PyCharm
@Author fx221@cam.ac.uk
@Date 29/01/2024 14:26
=================================================='''
import argparse
import os
import os.path as osp
import torch
import torchvision.transforms.transforms as tvt
import yaml
import torch.utils.data as Data
import torch.multiprocessing as mp
import torch.distributed as dist
from nets.segnet import SegNet
from nets.segnetvit import SegNetViT
from dataset.utils import collect_batch
from dataset.get_dataset import compose_datasets
from tools.common import torch_set_gpu
from trainer import Trainer
from nets.sfd2 import ResNet4x, DescriptorCompressor
from nets.superpoint import SuperPoint
torch.set_grad_enabled(True)
parser = argparse.ArgumentParser(description='PRAM', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--config', type=str, required=True, help='config of specifications')
parser.add_argument('--landmark_path', type=str, default=None, help='path of landmarks')
def load_feat_network(config):
if config['feature'] == 'spp':
net = SuperPoint(config={
'weight_path': '/scratches/flyer_2/fx221/Research/Code/third_weights/superpoint_v1.pth',
}).eval()
elif config['feature'] == 'resnet4x':
net = ResNet4x(inputdim=3, outdim=128)
net.load_state_dict(
torch.load('weights/sfd2_20230511_210205_resnet4x.79.pth', map_location='cpu')['state_dict'],
strict=True)
net.eval()
else:
print('Please input correct feature {:s}'.format(config['feature']))
net = None
if config['feat_dim'] != 128:
desc_compressor = DescriptorCompressor(inputdim=128, outdim=config['feat_dim']).eval()
if config['feat_dim'] == 64:
desc_compressor.load_state_dict(
torch.load('weights/20230511_210205_resnet4x_B6_R512_I3_O128_pho_resnet4x_e79_to_O64.pth',
map_location='cpu'),
strict=True)
elif config['feat_dim'] == 32:
desc_compressor.load_state_dict(
torch.load('weights/20230511_210205_resnet4x_B6_R512_I3_O128_pho_resnet4x_e79_to_O32.pth',
map_location='cpu'),
strict=True)
else:
desc_compressor = None
else:
desc_compressor = None
return net, desc_compressor
def get_model(config):
desc_dim = 256 if config['feature'] == 'spp' else 128
if config['use_mid_feature']:
desc_dim = 256
model_config = {
'network': {
'descriptor_dim': desc_dim,
'n_layers': config['layers'],
'ac_fn': config['ac_fn'],
'norm_fn': config['norm_fn'],
'n_class': config['n_class'],
'output_dim': config['output_dim'],
'with_cls': config['with_cls'],
'with_sc': config['with_sc'],
'with_score': config['with_score'],
}
}
if config['network'] == 'segnet':
model = SegNet(model_config.get('network', {}))
config['with_cls'] = False
elif config['network'] == 'segnetvit':
model = SegNetViT(model_config.get('network', {}))
config['with_cls'] = False
else:
raise 'ERROR! {:s} model does not exist'.format(config['network'])
if config['local_rank'] == 0:
if config['weight_path'] is not None:
state_dict = torch.load(osp.join(config['save_path'], config['weight_path']), map_location='cpu')['model']
model.load_state_dict(state_dict, strict=True)
print('Load weight from {:s}'.format(osp.join(config['save_path'], config['weight_path'])))
if config['resume_path'] is not None and not config['eval']: # only for training
model.load_state_dict(
torch.load(osp.join(config['save_path'], config['resume_path']), map_location='cpu')['model'],
strict=True)
print('Load resume weight from {:s}'.format(osp.join(config['save_path'], config['resume_path'])))
return model
def setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
# initialize the process group
dist.init_process_group("nccl", rank=rank, world_size=world_size)
def train_DDP(rank, world_size, model, config, train_set, test_set, feat_model, img_transforms):
print('In train_DDP..., rank: ', rank)
torch.cuda.set_device(rank)
device = torch.device(f'cuda:{rank}')
if feat_model is not None:
feat_model.to(device)
model.to(device)
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
setup(rank=rank, world_size=world_size)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[rank])
train_sampler = torch.utils.data.distributed.DistributedSampler(train_set,
shuffle=True,
rank=rank,
num_replicas=world_size,
drop_last=True, # important?
)
train_loader = torch.utils.data.DataLoader(train_set,
batch_size=config['batch_size'] // world_size,
num_workers=config['workers'] // world_size,
# num_workers=1,
pin_memory=True,
# persistent_workers=True,
shuffle=False, # must be False
drop_last=True,
collate_fn=collect_batch,
prefetch_factor=4,
sampler=train_sampler)
config['local_rank'] = rank
if rank == 0:
test_set = test_set
else:
test_set = None
trainer = Trainer(model=model, train_loader=train_loader, feat_model=feat_model, eval_loader=test_set,
config=config, img_transforms=img_transforms)
trainer.train()
if __name__ == '__main__':
args = parser.parse_args()
with open(args.config, 'rt') as f:
config = yaml.load(f, Loader=yaml.Loader)
torch_set_gpu(gpus=config['gpu'])
if config['local_rank'] == 0:
print(config)
if config['feature'] == 'spp':
img_transforms = None
else:
img_transforms = []
img_transforms.append(tvt.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))
img_transforms = tvt.Compose(img_transforms)
feat_model, desc_compressor = load_feat_network(config=config)
dataset = config['dataset']
if config['eval'] or config['loc']:
if not config['online']:
from localization.loc_by_rec_eval import loc_by_rec_eval
test_set = compose_datasets(datasets=dataset, config=config, train=False, sample_ratio=1)
config['n_class'] = test_set.n_class
model = get_model(config=config)
loc_by_rec_eval(rec_model=model.cuda().eval(),
loader=test_set,
local_feat=feat_model.cuda().eval(),
config=config, img_transforms=img_transforms)
else:
from localization.loc_by_rec_online import loc_by_rec_online
model = get_model(config=config)
loc_by_rec_online(rec_model=model.cuda().eval(),
local_feat=feat_model.cuda().eval(),
config=config, img_transforms=img_transforms)
exit(0)
train_set = compose_datasets(datasets=dataset, config=config, train=True, sample_ratio=None)
if config['do_eval']:
test_set = compose_datasets(datasets=dataset, config=config, train=False, sample_ratio=None)
else:
test_set = None
config['n_class'] = train_set.n_class
model = get_model(config=config)
if not config['with_dist'] or len(config['gpu']) == 1:
config['with_dist'] = False
model = model.cuda()
train_loader = Data.DataLoader(dataset=train_set,
shuffle=True,
batch_size=config['batch_size'],
drop_last=True,
collate_fn=collect_batch,
num_workers=config['workers'])
if test_set is not None:
test_loader = Data.DataLoader(dataset=test_set,
shuffle=False,
batch_size=1,
drop_last=False,
collate_fn=collect_batch,
num_workers=4)
else:
test_loader = None
trainer = Trainer(model=model, train_loader=train_loader, feat_model=feat_model, eval_loader=test_loader,
config=config, img_transforms=img_transforms)
trainer.train()
else:
mp.spawn(train_DDP, nprocs=len(config['gpu']),
args=(len(config['gpu']), model, config, train_set, test_set, feat_model, img_transforms),
join=True)