Spaces:
Sleeping
Sleeping
import kornia | |
from kornia.feature.laf import ( | |
laf_from_center_scale_ori, | |
extract_patches_from_pyramid, | |
) | |
import numpy as np | |
import torch | |
import pycolmap | |
from ..utils.base_model import BaseModel | |
EPS = 1e-6 | |
def sift_to_rootsift(x): | |
x = x / (np.linalg.norm(x, ord=1, axis=-1, keepdims=True) + EPS) | |
x = np.sqrt(x.clip(min=EPS)) | |
x = x / (np.linalg.norm(x, axis=-1, keepdims=True) + EPS) | |
return x | |
class DoG(BaseModel): | |
default_conf = { | |
"options": { | |
"first_octave": 0, | |
"peak_threshold": 0.01, | |
}, | |
"descriptor": "rootsift", | |
"max_keypoints": -1, | |
"patch_size": 32, | |
"mr_size": 12, | |
} | |
required_inputs = ["image"] | |
detection_noise = 1.0 | |
max_batch_size = 1024 | |
def _init(self, conf): | |
if conf["descriptor"] == "sosnet": | |
self.describe = kornia.feature.SOSNet(pretrained=True) | |
elif conf["descriptor"] == "hardnet": | |
self.describe = kornia.feature.HardNet(pretrained=True) | |
elif conf["descriptor"] not in ["sift", "rootsift"]: | |
raise ValueError(f'Unknown descriptor: {conf["descriptor"]}') | |
self.sift = None # lazily instantiated on the first image | |
self.dummy_param = torch.nn.Parameter(torch.empty(0)) | |
self.device = torch.device("cpu") | |
def to(self, *args, **kwargs): | |
device = kwargs.get("device") | |
if device is None: | |
match = [a for a in args if isinstance(a, (torch.device, str))] | |
if len(match) > 0: | |
device = match[0] | |
if device is not None: | |
self.device = torch.device(device) | |
return super().to(*args, **kwargs) | |
def _forward(self, data): | |
image = data["image"] | |
image_np = image.cpu().numpy()[0, 0] | |
assert image.shape[1] == 1 | |
assert image_np.min() >= -EPS and image_np.max() <= 1 + EPS | |
if self.sift is None: | |
device = self.dummy_param.device | |
use_gpu = pycolmap.has_cuda and device.type == "cuda" | |
options = {**self.conf["options"]} | |
if self.conf["descriptor"] == "rootsift": | |
options["normalization"] = pycolmap.Normalization.L1_ROOT | |
else: | |
options["normalization"] = pycolmap.Normalization.L2 | |
self.sift = pycolmap.Sift( | |
options=pycolmap.SiftExtractionOptions(options), | |
device=getattr(pycolmap.Device, "cuda" if use_gpu else "cpu"), | |
) | |
keypoints, descriptors = self.sift.extract(image_np) | |
scales = keypoints[:, 2] | |
oris = np.rad2deg(keypoints[:, 3]) | |
if self.conf["descriptor"] in ["sift", "rootsift"]: | |
# We still renormalize because COLMAP does not normalize well, | |
# maybe due to numerical errors | |
if self.conf["descriptor"] == "rootsift": | |
descriptors = sift_to_rootsift(descriptors) | |
descriptors = torch.from_numpy(descriptors) | |
elif self.conf["descriptor"] in ("sosnet", "hardnet"): | |
center = keypoints[:, :2] + 0.5 | |
laf_scale = scales * self.conf["mr_size"] / 2 | |
laf_ori = -oris | |
lafs = laf_from_center_scale_ori( | |
torch.from_numpy(center)[None], | |
torch.from_numpy(laf_scale)[None, :, None, None], | |
torch.from_numpy(laf_ori)[None, :, None], | |
).to(image.device) | |
patches = extract_patches_from_pyramid( | |
image, lafs, PS=self.conf["patch_size"] | |
)[0] | |
descriptors = patches.new_zeros((len(patches), 128)) | |
if len(patches) > 0: | |
for start_idx in range(0, len(patches), self.max_batch_size): | |
end_idx = min(len(patches), start_idx + self.max_batch_size) | |
descriptors[start_idx:end_idx] = self.describe( | |
patches[start_idx:end_idx] | |
) | |
else: | |
raise ValueError(f'Unknown descriptor: {self.conf["descriptor"]}') | |
keypoints = torch.from_numpy(keypoints[:, :2]) # keep only x, y | |
scales = torch.from_numpy(scales) | |
oris = torch.from_numpy(oris) | |
scores = keypoints.new_zeros(len(keypoints)) # no scores for SIFT yet | |
if self.conf["max_keypoints"] != -1: | |
# TODO: check that the scores from PyCOLMAP are 100% correct, | |
# follow https://github.com/mihaidusmanu/pycolmap/issues/8 | |
max_number = ( | |
scores.shape[0] | |
if scores.shape[0] < self.conf["max_keypoints"] | |
else self.conf["max_keypoints"] | |
) | |
values, indices = torch.topk(scores, max_number) | |
keypoints = keypoints[indices] | |
scales = scales[indices] | |
oris = oris[indices] | |
scores = scores[indices] | |
descriptors = descriptors[indices] | |
return { | |
"keypoints": keypoints[None], | |
"scales": scales[None], | |
"oris": oris[None], | |
"scores": scores[None], | |
"descriptors": descriptors.T[None], | |
} | |