Spaces:
Sleeping
Sleeping
import numpy as np | |
def denorm(img, max_value): | |
img = img * float(max_value) | |
return img | |
def preprocess_test_patch(input_image, target_image, gt_image): | |
input_patch_list = [] | |
target_patch_list = [] | |
gt_patch_list = [] | |
H = input_image.shape[2] | |
W = input_image.shape[3] | |
for i in range(3): | |
for j in range(3): | |
input_patch = input_image[ | |
:, | |
:, | |
int(i * H / 3) : int((i + 1) * H / 3), | |
int(j * W / 3) : int((j + 1) * W / 3), | |
] | |
target_patch = target_image[ | |
:, | |
:, | |
int(i * H / 3) : int((i + 1) * H / 3), | |
int(j * W / 3) : int((j + 1) * W / 3), | |
] | |
gt_patch = gt_image[ | |
:, | |
:, | |
int(i * H / 3) : int((i + 1) * H / 3), | |
int(j * W / 3) : int((j + 1) * W / 3), | |
] | |
input_patch_list.append(input_patch) | |
target_patch_list.append(target_patch) | |
gt_patch_list.append(gt_patch) | |
return input_patch_list, target_patch_list, gt_patch_list | |