from gradio_client import Client #client = Client("https://svjack-entity-property-extractor-zh.hf.space/--replicas/boyb8/") client = Client("https://svjack-entity-property-extractor-zh.hf.space") import pandas as pd import numpy as np import os import re from langchain.vectorstores import FAISS from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain import chains from rapidfuzz import fuzz import pandas as pd import chatglm_cpp from pathlib import Path import pandas as pd from huggingface_hub import snapshot_download if not os.path.exists("genshin_book_chunks_with_qa_sp"): path = snapshot_download( repo_id="svjack/genshin_book_chunks_with_qa_sp", repo_type="dataset", local_dir="genshin_book_chunks_with_qa_sp", local_dir_use_symlinks = False ) if not os.path.exists("bge_small_book_chunks_prebuld"): path = snapshot_download( repo_id="svjack/bge_small_book_chunks_prebuld", repo_type="dataset", local_dir="bge_small_book_chunks_prebuld", local_dir_use_symlinks = False ) if not os.path.exists("chatglm3-6b-bin"): path = snapshot_download( repo_id="svjack/chatglm3-6b-bin", repo_type="model", local_dir="chatglm3-6b-bin", local_dir_use_symlinks = False ) #model_file_path = "chatglm3-6b-int4.bin" model_file_path = "chatglm3-6b-bin/chatglm3-6b-int4.bin" print("load {}".format(model_file_path)) chatglm_llm = chatglm_cpp.Pipeline(Path(model_file_path)) def chat_messages(message, history, chatglm_llm = chatglm_llm, max_length = 128, show_process = False ): flatten_history = [] for a, b in history: flatten_history.append( chatglm_cpp.ChatMessage(role="user", content=a) ) flatten_history.append( chatglm_cpp.ChatMessage(role="assistant", content=b) ) streamer = chatglm_llm.chat( flatten_history + [ chatglm_cpp.ChatMessage(role="user", content=message) ], do_sample=False, stream = True, max_length = 5120 ) response = "" for new_text in streamer: response += new_text.content if show_process: print(response) #from IPython.display import clear_output #clear_output(wait=True) yield response if len(response) >= max_length: break #return response ''' query = "警察是如何破获邪恶计划的?" ## 警 执律 盗 k = 10 uniform_recall_docs_to_pairwise_cos( query, docsearch_bge_loaded.similarity_search_with_score(query, k = k, ), bge_book_embeddings ) ''' def uniform_recall_docs_to_pairwise_cos(query ,doc_list, embeddings): assert type(doc_list) == type([]) from langchain.evaluation import load_evaluator from langchain.evaluation import EmbeddingDistance hf_evaluator = load_evaluator("pairwise_embedding_distance", embeddings=embeddings, distance_metric = EmbeddingDistance.COSINE) return sorted(pd.Series(doc_list).map(lambda x: x[0].page_content).map(lambda x: (x ,hf_evaluator.evaluate_string_pairs(prediction=query, prediction_b=x)["score"]) ).values.tolist(), key = lambda t2: t2[1]) ''' sort_by_kw("深渊使徒", book_df)["content_chunks_formatted"].head(5).values.tolist() ### 深渊 ''' def sort_by_kw(kw, book_df): req = book_df.copy() req["sim_score"] = req.apply( lambda x: max(map(lambda y: fuzz.ratio(y, kw) ,eval(x["person"]) + eval(x["locate"]) + eval(x["locate"]))) if \ eval(x["person"]) + eval(x["locate"]) + eval(x["locate"]) else 0 , axis = 1 ) req = req.sort_values(by = "sim_score", ascending = False) return req def recall_chuncks(query, docsearch, embedding, book_df, sparse_threshold = 30, dense_top_k = 10, rerank_by = "emb", ): sparse_output = sort_by_kw(query, book_df)[["content_chunks_formatted", "sim_score"]] sparse_output_list = sparse_output[ sparse_output["sim_score"] >= sparse_threshold ]["content_chunks_formatted"].values.tolist() dense_output = uniform_recall_docs_to_pairwise_cos( query, docsearch.similarity_search_with_score(query, k = dense_top_k,), embedding ) for chunck, score in dense_output: if chunck not in sparse_output_list: sparse_output_list.append(chunck) if rerank_by == "emb": from langchain.evaluation import load_evaluator from langchain.evaluation import EmbeddingDistance hf_evaluator = load_evaluator("pairwise_embedding_distance", embeddings=embedding, distance_metric = EmbeddingDistance.COSINE) return pd.Series(sorted(pd.Series(sparse_output_list).map(lambda x: (x ,hf_evaluator.evaluate_string_pairs(prediction=query, prediction_b=x)["score"]) ).values.tolist(), key = lambda t2: t2[1])).map(lambda x: x[0]).values.tolist() else: sparse_output_list = sorted(sparse_output_list, key = lambda x: fuzz.ratio(x, query), reverse = True) return sparse_output_list def reduce_list_by_order(text_list, as_text = False): if not text_list: return df = pd.DataFrame( list(map(lambda x: (x.split("\n")[0], x.split("\n")[1], "\n".join(x.split("\n")[2:])), text_list)) ).groupby([0, 1])[2].apply(list).map(lambda x: sorted(x, key = len, reverse=True)).map( "\n\n".join ).reset_index() d = dict(df.apply(lambda x: ((x.iloc[0], x.iloc[1]), x.iloc[2]), axis = 1).values.tolist()) #return df order_list = [] for x in text_list: a, b = x.split("\n")[0], x.split("\n")[1] if not order_list: order_list = [[a, [b]]] elif a in list(map(lambda t2: t2[0], order_list)): order_list[list(map(lambda t2: t2[0], order_list)).index(a)][1].append(b) elif a not in list(map(lambda t2: t2[0], order_list)): order_list.append([a, [b]]) df = pd.DataFrame(pd.DataFrame(order_list).explode(1).dropna().apply( lambda x: (x.iloc[0], x.iloc[1], d[(x.iloc[0], x.iloc[1])]), axis = 1 ).values.tolist()).drop_duplicates() if as_text: return "\n\n".join( df.apply(lambda x: "{}\n{}\n{}".format(x.iloc[0], x.iloc[1], x.iloc[2]), axis = 1).values.tolist() ) return df def build_gpt_prompt(query, docsearch, embedding, book_df, max_context_length = 4090): l = recall_chuncks(query, docsearch, embedding, book_df) context = reduce_list_by_order(l, as_text = True) context_l = [] for ele in context.split("\n"): if sum(map(len, context_l)) >= max_context_length: break context_l.append(ele) context = "\n".join(context_l).strip() template = """使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答案。尽量使答案简明扼要。总是在回答的最后说“谢谢你的提问!”。 {context} 问题: {question} 有用的回答:""" return template.format( **{ "context": context, "question": query } ) def collect_prompt_to_hist_list(prompt, add_assistant = False): l = pd.Series(prompt.split("\n\n")).map(lambda x: x.strip()).values.tolist() ll = [] for ele in l: if not ll: ll.append(ele) else: if ele.startswith("文章标题:") or ele.startswith("问题:"): ll.append(ele) else: ll[-1] += ("\n\n" + ele) if add_assistant: ll_ = [] for i in range(len(ll)): if i == 0: ll_.append((ll[i], "好的。")) elif i < len(ll) - 1: ll_.append((ll[i], "我读懂了。")) else: ll_.append((ll[i], "")) return ll_ else: return ll def row_to_content_ask(r): question = r["question"] content_list = r["content_list"] assert type(content_list) == type([]) content_prompt_list = pd.Series(content_list).map( lambda x: ''' {}\n从上面的相关的叙述中抽取包含"{}"中词汇的相关语段。 '''.format(x, question).strip() ).values.tolist() return content_prompt_list def entity_extractor_by_glm(query, show_process = False, max_length = 512, return_out_text = False, ): import re hist = [ ['请从下面的句子中提取实体和属性。不需要进行进一步解释。', '好的。'], ['问题:宁波在哪个省份?', '实体:宁波 属性:省份'], ['问题:中国的货币是什么?', '实体:中国 属性:货币'], ['问题:百慕大三角在什么地方?', '实体:百慕大三角 属性:地方'], ['问题:谁是最可爱的人?', "实体:人 属性:可爱"], ['问题:黄河的拐点在哪里?', "实体:黄河 属性:拐点"], #['问题:魔神归终在哪里?', '实体:归终 属性:哪里'], #["玉米的引进时间是什么时候?", ""] ] out_text = chat_messages("问题:{}".format(query), hist, ) req = "" for ele in out_text: req = ele out_text = req if return_out_text: return out_text e_list = re.findall(r"实体(.*?)属性", out_text.replace("\n", " ")) if e_list: return re.findall(u"[\u4e00-\u9fa5]+" ,e_list[0]) return None def unzip_string(x, size = 2): if len(x) <= size: return [x] req = [] for i in range(len(x) - size + 1): req.append(x[i: i + size]) return req def entity_extractor_by_adapter(x): import json result = client.predict( x, # str in 'question' Textbox component api_name="/predict" ) with open(result, "r") as f: req = json.load(f) req_list = req.get("E-TAG", []) req_ = [] for ele in req_list: for x in unzip_string(ele, 2): if x not in req_: req_.append(x) return req_ ##### maybe 0.1 def query_content_ask_func(question, content_list, setfit_model, show_process = False, max_length = 1024): ask_list = row_to_content_ask( { "question": question, "content_list": content_list } ) #return ask_list req = [] for prompt in ask_list: out_text = chat_messages(prompt + "如果没有提到相关内容,请回答不知道。使用中文进行回答,不要包含任何英文。", [], show_process = show_process, max_length = max_length ) req_ = "" for ele in out_text: req_ = ele out_text = req_ req.append(out_text) d = { "question": question, "content_list": content_list } assert len(req) == len(ask_list) d["question_content_relate_list"] = req d["relate_prob_list"] = setfit_model.predict_proba( req ).numpy()[:, 1].tolist() return d def build_relate_ask_list(query, docsearch_bge_loaded, bge_book_embeddings, book_df, setfit_model, as_content_score_df = True, show_process = False, add_relate_entities = False, max_length = 1024): prompt = build_gpt_prompt(query, docsearch_bge_loaded, bge_book_embeddings, book_df) prompt_list = collect_prompt_to_hist_list(prompt) #print(prompt_list) question = prompt_list[-1].split("\n")[0] content_list = prompt_list[1:-1] d = query_content_ask_func(question, content_list, setfit_model, show_process = show_process) #entity_list = entity_extractor_by_glm(query, #show_process = show_process, max_length = max_length) entity_list = entity_extractor_by_adapter(query) if type(entity_list) != type([]): entity_list = [] d["in_content_entity_list"] = list(map(lambda x: list(filter(lambda e: e in x, entity_list)) , d["content_list"])) if add_relate_entities: relate_content_entity_list = [[]] * len(content_list) for entity in entity_list: entity_content_score_d = query_content_ask_func(entity, d["content_list"], setfit_model, show_process = show_process) lookup_df = pd.DataFrame( list(zip(*[entity_content_score_d["content_list"], entity_content_score_d["relate_prob_list"]])) ) for ii, (i, r) in enumerate(lookup_df.iterrows()): if r.iloc[1] >= 0.5 and entity not in relate_content_entity_list[ii]: #relate_content_entity_list[ii].append(entity) relate_content_entity_list[ii] = relate_content_entity_list[ii] + [entity] d["relate_content_entity_list"] = relate_content_entity_list if as_content_score_df: if add_relate_entities: df = pd.concat( [ pd.Series(d["content_list"]).map(lambda x: x.strip()), pd.Series(d["in_content_entity_list"]), pd.Series(d["relate_content_entity_list"]), pd.Series(d["question_content_relate_list"]).map(lambda x: x.strip()), pd.Series(d["relate_prob_list"]) ], axis = 1 ) df.columns = ["content", "entities", "relate_entities", "relate_eval_str", "score"] else: df = pd.concat( [ pd.Series(d["content_list"]).map(lambda x: x.strip()), pd.Series(d["in_content_entity_list"]), #pd.Series(d["relate_content_entity_list"]), pd.Series(d["question_content_relate_list"]).map(lambda x: x.strip()), pd.Series(d["relate_prob_list"]) ], axis = 1 ) df.columns = ["content", "entities", "relate_eval_str", "score"] req = [] entities_num_list = df["entities"].map(len).drop_duplicates().dropna().sort_values(ascending = False).\ values.tolist() for e_num in entities_num_list: req.append( df[ df["entities"].map(lambda x: len(x) == e_num) ].sort_values(by = "score", ascending = False) ) return pd.concat(req, axis = 0) #df = df.sort_values(by = "score", ascending = False) #return df return d def run_all(query, docsearch_bge_loaded, bge_book_embeddings, book_df, setfit_model, only_return_prompt = False): df = build_relate_ask_list(query, docsearch_bge_loaded, bge_book_embeddings, book_df, setfit_model, show_process=False) info_list = df[ df.apply( lambda x: x["score"] >= 0.1 and bool(x["entities"]), axis = 1 ) ].values.tolist() if not info_list: return df, info_list, "没有相关内容,谢谢你的提问。" prompt = ''' 问题: {} 根据下面的内容回答上面的问题,如果无法根据内容确定答案,请回答不知道。 {} '''.format(query, "\n\n".join(pd.Series(info_list).map(lambda x: x[0]).values.tolist())) if only_return_prompt: return df, info_list, prompt q_head = "\n".join(prompt.split("\n")[:2]) c_tail = "\n".join(prompt.split("\n")[2:])[:4000] out_text = chat_messages( c_tail + "\n" + q_head.replace("下面的内容回答上面的问题", "上面的内容回答问题") + "用中文回答问题。", [], show_process = False, max_length = 512 ) req_ = "" for ele in out_text: req_ = ele out_text = req_.strip() return df, info_list, out_text import gradio as gr #book_df = pd.read_csv("genshin_book_chunks_with_qa_sp.csv") book_df = pd.read_csv("genshin_book_chunks_with_qa_sp/genshin_book_chunks_with_qa_sp.csv") book_df["content_chunks"].dropna().drop_duplicates().shape book_df["content_chunks_formatted"] = book_df.apply( lambda x: "文章标题:{}\n子标题:{}\n内容:{}".format(x["title"], x["sub_title"], x["content_chunks"]), axis = 1 ) texts = book_df["content_chunks_formatted"].dropna().drop_duplicates().values.tolist() #embedding_path = "bge-small-book-qa/" embedding_path = "svjack/bge-small-book-qa" bge_book_embeddings = HuggingFaceEmbeddings(model_name=embedding_path) docsearch_bge_loaded = FAISS.load_local("bge_small_book_chunks_prebuld/", bge_book_embeddings, allow_dangerous_deserialization = True ) from setfit import SetFitModel setfit_model = SetFitModel.from_pretrained("svjack/setfit_info_cls") with gr.Blocks() as demo: title = gr.HTML( """