import os os.system("pip uninstall numpy -y") os.system("pip install numpy") os.system("pip install pandas") import gradio as gr import sys from uuid import uuid1 from PIL import Image from zipfile import ZipFile import pathlib import shutil import pandas as pd import deepsparse import json rn50_embedding_pipeline_default = deepsparse.Pipeline.create( task="embedding-extraction", base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni", #emb_extraction_layer=-1, # extracts last layer before projection head and softmax ) rn50_embedding_pipeline_last_1 = deepsparse.Pipeline.create( task="embedding-extraction", base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni", emb_extraction_layer=-1, # extracts last layer before projection head and softmax ) rn50_embedding_pipeline_last_2 = deepsparse.Pipeline.create( task="embedding-extraction", base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni", emb_extraction_layer=-2, # extracts last layer before projection head and softmax ) rn50_embedding_pipeline_last_3 = deepsparse.Pipeline.create( task="embedding-extraction", base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni", emb_extraction_layer=-3, # extracts last layer before projection head and softmax ) rn50_embedding_pipeline_dict = { "0": rn50_embedding_pipeline_default, "1": rn50_embedding_pipeline_last_1, "2": rn50_embedding_pipeline_last_2, "3": rn50_embedding_pipeline_last_3 } def zip_ims(g): from uuid import uuid1 if g is None: return None l = list(map(lambda x: x["name"], g)) if not l: return None zip_file_name ="tmp.zip" with ZipFile(zip_file_name ,"w") as zipObj: for ele in l: zipObj.write(ele, "{}.png".format(uuid1())) #zipObj.write(file2.name, "file2") return zip_file_name def unzip_ims_func(zip_file_name, choose_model, rn50_embedding_pipeline_dict = rn50_embedding_pipeline_dict): print("call file") if zip_file_name is None: return json.dumps({}) unzip_path = "img_dir" if os.path.exists(unzip_path): shutil.rmtree(unzip_path) with ZipFile(zip_file_name) as archive: archive.extractall(unzip_path) im_name_l = pd.Series( list(pathlib.Path(unzip_path).rglob("*.png")) + \ list(pathlib.Path(unzip_path).rglob("*.jpg")) + \ list(pathlib.Path(unzip_path).rglob("*.jpeg")) ).map(str).values.tolist() rn50_embedding_pipeline = rn50_embedding_pipeline_dict[choose_model] embeddings = rn50_embedding_pipeline(images=im_name_l) if os.path.exists(unzip_path): shutil.rmtree(unzip_path) im_name_l = pd.Series(im_name_l).map(lambda x: x.split("/")[-1]).values.tolist() return json.dumps({ "names": im_name_l, "embs": embeddings.embeddings[0] }) def emb_img_func(im, choose_model, rn50_embedding_pipeline_dict = rn50_embedding_pipeline_dict): print("call im :") if im is None: return json.dumps({}) im_obj = Image.fromarray(im) im_name = "{}.png".format(uuid1()) im_obj.save(im_name) rn50_embedding_pipeline = rn50_embedding_pipeline_dict[choose_model] embeddings = rn50_embedding_pipeline(images=[im_name]) os.remove(im_name) return json.dumps({ "names": [im_name], "embs": embeddings.embeddings[0] }) ''' def emb_gallery_func(gallery): print("call ga :") if gallery is None: return [] im_name_l = list(map(lambda x: x["name"], images)) embeddings = rn50_embedding_pipeline(images=im_name_l) return embeddings ''' with gr.Blocks() as demo: with gr.Row(): choose_model = gr.Radio(choices=["0", "1", "2", "3"], value="0", label="Choose embedding layer", elem_id="layer_radio") with gr.Row(): with gr.Column(): inputs_0 = gr.Image(label = "Input Image for embed") button_0 = gr.Button("Image button") with gr.Column(): inputs_1 = gr.File(label = "Input Images zip file for embed") button_1 = gr.Button("Image File button") with gr.Row(): outputs = gr.Text(label = "Output Embeddings") button_0.click(fn = emb_img_func, inputs = [inputs_0, choose_model], outputs = outputs) button_1.click(fn = unzip_ims_func, inputs = [inputs_1, choose_model], outputs = outputs) demo.launch("0.0.0.0")