Spaces:
Runtime error
Runtime error
File size: 9,259 Bytes
825cf2e 321014a 825cf2e 7f90038 825cf2e 7f90038 825cf2e 7f90038 0ddca41 7f90038 825cf2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
'''
!pip install "deepsparse-nightly==1.6.0.20231007"
!pip install "deepsparse[image_classification]"
!pip install opencv-python-headless
!pip uninstall numpy -y
!pip install numpy
!pip install gradio
!pip install pandas
'''
import os
os.system("pip uninstall numpy -y")
os.system("pip install numpy")
os.system("pip install pandas")
import gradio as gr
import sys
from uuid import uuid1
from PIL import Image
from zipfile import ZipFile
import pathlib
import shutil
import pandas as pd
import deepsparse
import json
import numpy as np
rn50_embedding_pipeline_default = deepsparse.Pipeline.create(
task="embedding-extraction",
base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
#emb_extraction_layer=-1, # extracts last layer before projection head and softmax
)
rn50_embedding_pipeline_last_1 = deepsparse.Pipeline.create(
task="embedding-extraction",
base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
emb_extraction_layer=-1, # extracts last layer before projection head and softmax
)
rn50_embedding_pipeline_last_2 = deepsparse.Pipeline.create(
task="embedding-extraction",
base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
emb_extraction_layer=-2, # extracts last layer before projection head and softmax
)
rn50_embedding_pipeline_last_3 = deepsparse.Pipeline.create(
task="embedding-extraction",
base_task="image-classification", # tells the pipeline to expect images and normalize input with ImageNet means/stds
model_path="zoo:cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/channel20_pruned75_quant-none-vnni",
emb_extraction_layer=-3, # extracts last layer before projection head and softmax
)
rn50_embedding_pipeline_dict = {
"0": rn50_embedding_pipeline_default,
"1": rn50_embedding_pipeline_last_1,
"2": rn50_embedding_pipeline_last_2,
"3": rn50_embedding_pipeline_last_3
}
def zip_ims(g):
from uuid import uuid1
if g is None:
return None
l = list(map(lambda x: x["name"], g))
if not l:
return None
zip_file_name ="tmp.zip"
with ZipFile(zip_file_name ,"w") as zipObj:
for ele in l:
zipObj.write(ele, "{}.png".format(uuid1()))
#zipObj.write(file2.name, "file2")
return zip_file_name
def unzip_ims_func(zip_file_name, choose_model,
rn50_embedding_pipeline_dict = rn50_embedding_pipeline_dict):
print("call file")
if zip_file_name is None:
return json.dumps({}), None
print("zip_file_name :")
print(zip_file_name)
unzip_path = "img_dir"
if os.path.exists(unzip_path):
shutil.rmtree(unzip_path)
with ZipFile(zip_file_name) as archive:
archive.extractall(unzip_path)
im_name_l = pd.Series(
list(pathlib.Path(unzip_path).rglob("*.png")) + \
list(pathlib.Path(unzip_path).rglob("*.jpg")) + \
list(pathlib.Path(unzip_path).rglob("*.jpeg"))
).map(str).values.tolist()
rn50_embedding_pipeline = rn50_embedding_pipeline_dict[choose_model]
embeddings = rn50_embedding_pipeline(images=im_name_l)
im_l = pd.Series(im_name_l).map(Image.open).values.tolist()
if os.path.exists(unzip_path):
shutil.rmtree(unzip_path)
im_name_l = pd.Series(im_name_l).map(lambda x: x.split("/")[-1]).values.tolist()
return json.dumps({
"names": im_name_l,
"embs": embeddings.embeddings[0]
}), im_l
def emb_img_func(im, choose_model,
rn50_embedding_pipeline_dict = rn50_embedding_pipeline_dict):
print("call im :")
if im is None:
return json.dumps({})
im_obj = Image.fromarray(im)
im_name = "{}.png".format(uuid1())
im_obj.save(im_name)
rn50_embedding_pipeline = rn50_embedding_pipeline_dict[choose_model]
embeddings = rn50_embedding_pipeline(images=[im_name])
os.remove(im_name)
return json.dumps({
"names": [im_name],
"embs": embeddings.embeddings[0]
})
def image_grid(imgs, rows, cols):
assert len(imgs) <= rows*cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def image_click(images, evt: gr.SelectData,
choose_model,
rn50_embedding_pipeline_dict = rn50_embedding_pipeline_dict,
top_k = 5
):
images = json.loads(images.model_dump_json())
images = list(map(lambda x: {"name": x["image"]["path"]}, images))
img_selected = images[evt.index]
pivot_image_path = images[evt.index]['name']
im_name_l = list(map(lambda x: x["name"], images))
rn50_embedding_pipeline = rn50_embedding_pipeline_dict[choose_model]
embeddings = rn50_embedding_pipeline(images=im_name_l)
json_text = json.dumps({
"names": im_name_l,
"embs": embeddings.embeddings[0]
})
assert type(json_text) == type("")
assert type(pivot_image_path) in [type(""), type(0)]
dd_obj = json.loads(json_text)
names = dd_obj["names"]
embs = dd_obj["embs"]
assert pivot_image_path in names
corr_df = pd.DataFrame(np.asarray(embs).T).corr()
corr_df.columns = names
corr_df.index = names
arr_l = []
for i, r in corr_df.iterrows():
arr_ll = sorted(r.to_dict().items(), key = lambda t2: t2[1], reverse = True)
arr_l.append(arr_ll)
top_k = min(len(corr_df), top_k)
cols = pd.Series(arr_l[names.index(pivot_image_path)]).map(lambda x: x[0]).values.tolist()[:top_k]
corr_array_df = pd.DataFrame(arr_l).applymap(lambda x: x[0])
corr_array_df.index = names
#### corr_array
corr_array = corr_array_df.loc[cols].iloc[:, :top_k].values
l_list = pd.Series(corr_array.reshape([-1])).values.tolist()
l_list = pd.Series(l_list).map(Image.open).map(lambda x: expand2square(x, (0, 0, 0))).values.tolist()
l_dist_list = []
for ele in l_list:
if ele not in l_dist_list:
l_dist_list.append(ele)
return l_dist_list, l_list
with gr.Blocks() as demo:
title = gr.HTML(
"""<h1><img src="https://i.imgur.com/52VJ8vS.png" alt="SD"> Deepsparse Image Embedding </h1>""",
elem_id="title",
)
with gr.Row():
with gr.Column():
inputs_0 = gr.Image(label = "Input Image for embed")
button_0 = gr.Button("Image button")
with gr.Column():
inputs_1 = gr.File(label = "Input Images zip file for embed")
button_1 = gr.Button("Image File button")
with gr.Row():
with gr.Column():
with gr.Row():
title = gr.Markdown(
value="### Click on a Image in the gallery to select it",
visible=True,
elem_id="selected_model",
)
choose_model = gr.Radio(choices=["0", "1", "2", "3"],
value="0", label="Choose embedding layer", elem_id="layer_radio")
g_outputs = gr.Gallery(label='Output gallery', elem_id="gallery",
columns=[5],object_fit="contain", height="auto")
outputs = gr.Text(label = "Output Embeddings")
with gr.Column():
sdg_outputs = gr.Gallery(label='Sort Distinct gallery', elem_id="gallery",
columns=[5],object_fit="contain", height="auto")
sg_outputs = gr.Gallery(label='Sort gallery', elem_id="gallery",
columns=[5],object_fit="contain", height="auto")
with gr.Row():
gr.Examples(
[
"Anything_V5.png",
"waifu_girl0.png",
],
inputs = inputs_0,
label = "Image Examples"
)
gr.Examples(
[
"rose_love_imgs.zip",
"beautiful_room_imgs.zip"
],
inputs = inputs_1,
label = "Image Zip file Examples"
)
button_0.click(fn = emb_img_func, inputs = [inputs_0, choose_model], outputs = outputs)
button_1.click(fn = unzip_ims_func, inputs = [inputs_1, choose_model],
outputs = [outputs, g_outputs])
g_outputs.select(image_click,
inputs = [g_outputs, choose_model],
outputs = [sdg_outputs, sg_outputs],)
demo.launch("0.0.0.0") |