'''
from diffusers import utils
from diffusers.utils import deprecation_utils
from diffusers.models import cross_attention
utils.deprecate = lambda *arg, **kwargs: None
deprecation_utils.deprecate = lambda *arg, **kwargs: None
cross_attention.deprecate = lambda *arg, **kwargs: None
'''
import os
import sys
'''
MAIN_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
sys.path.insert(0, MAIN_DIR)
os.chdir(MAIN_DIR)
'''
import gradio as gr
import numpy as np
import torch
import random
from annotator.util import resize_image, HWC3
from annotator.canny import CannyDetector
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from diffusers.pipelines import DiffusionPipeline
from diffusers.schedulers import DPMSolverMultistepScheduler
#from models import ControlLoRA, ControlLoRACrossAttnProcessor
apply_canny = CannyDetector()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
'''
pipeline = DiffusionPipeline.from_pretrained(
'IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Chinese-v0.1', safety_checker=None
)
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
pipeline = pipeline.to(device)
unet: UNet2DConditionModel = pipeline.unet
#ckpt_path = "ckpts/sd-diffusiondb-canny-model-control-lora-zh"
ckpt_path = "svjack/canny-control-lora-zh"
control_lora = ControlLoRA.from_pretrained(ckpt_path)
control_lora = control_lora.to(device)
# load control lora attention processors
lora_attn_procs = {}
lora_layers_list = list([list(layer_list) for layer_list in control_lora.lora_layers])
n_ch = len(unet.config.block_out_channels)
control_ids = [i for i in range(n_ch)]
for name in pipeline.unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
control_id = control_ids[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
control_id = list(reversed(control_ids))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
control_id = control_ids[block_id]
lora_layers = lora_layers_list[control_id]
if len(lora_layers) != 0:
lora_layer: ControlLoRACrossAttnProcessor = lora_layers.pop(0)
lora_attn_procs[name] = lora_layer
unet.set_attn_processor(lora_attn_procs)
'''
from diffusers import (
AutoencoderKL,
ControlNetModel,
DDPMScheduler,
StableDiffusionControlNetPipeline,
UNet2DConditionModel,
UniPCMultistepScheduler,
)
import torch
from diffusers.utils import load_image
controlnet_model_name_or_path = "svjack/ControlNet-Canny-Zh"
controlnet = ControlNetModel.from_pretrained(controlnet_model_name_or_path)
base_model_path = "IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Chinese-v0.1"
pipe = StableDiffusionControlNetPipeline.from_pretrained(
base_model_path, controlnet=controlnet,
#torch_dtype=torch.float16
)
# speed up diffusion process with faster scheduler and memory optimization
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
#pipe.enable_model_cpu_offload()
if device == "cuda":
pipe = pipe.to("cuda")
pipe.safety_checker = None
def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, sample_steps, scale, seed, eta, low_threshold, high_threshold):
from PIL import Image
with torch.no_grad():
img = resize_image(HWC3(input_image), image_resolution)
H, W, C = img.shape
detected_map = apply_canny(img, low_threshold, high_threshold)
detected_map = HWC3(detected_map)
'''
print(type(detected_map))
return [detected_map]
control = torch.from_numpy(detected_map[...,::-1].copy().transpose([2,0,1])).float().to(device)[None] / 127.5 - 1
_ = control_lora(control).control_states
if seed == -1:
seed = random.randint(0, 65535)
'''
if seed == -1:
seed = random.randint(0, 65535)
control_image = Image.fromarray(detected_map)
# run inference
generator = torch.Generator(device=device).manual_seed(seed)
images = []
for i in range(num_samples):
'''
_ = control_lora(control).control_states
image = pipeline(
prompt + ', ' + a_prompt, negative_prompt=n_prompt,
num_inference_steps=sample_steps, guidance_scale=scale, eta=eta,
generator=generator, height=H, width=W).images[0]
'''
image = pipe(
prompt + ', ' + a_prompt, negative_prompt=n_prompt,
num_inference_steps=sample_steps, guidance_scale=scale, eta=eta,
image = control_image,
generator=generator, height=H, width=W).images[0]
images.append(np.asarray(image))
results = images
return [255 - detected_map] + results
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown("## Control Stable Diffusion with Canny Edge Maps")
#gr.Markdown("This _example_ was **drive** from
[https://github.com/svjack/ControlLoRA-Chinese](https://github.com/svjack/ControlLoRA-Chinese)
\n")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy", value = "house.png")
prompt = gr.Textbox(label="Prompt", value = "房屋铅笔画")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256)
low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=100, step=1)
high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, step=1)
sample_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
eta = gr.Number(label="eta", value=0.0)
a_prompt = gr.Textbox(label="Added Prompt", value='')
n_prompt = gr.Textbox(label="Negative Prompt",
value='低质量,模糊,混乱')
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, sample_steps, scale, seed, eta, low_threshold, high_threshold]
run_button.click(fn=process, inputs=ips, outputs=[result_gallery], show_progress = True)
block.launch(server_name='0.0.0.0')
#### block.launch(server_name='172.16.202.228', share=True)