Spaces:
Sleeping
Sleeping
| # Copyright (c) OpenMMLab. All rights reserved. | |
| from ...parallel import is_module_wrapper | |
| from ..hooks.hook import HOOKS, Hook | |
| class EMAHook(Hook): | |
| r"""Exponential Moving Average Hook. | |
| Use Exponential Moving Average on all parameters of model in training | |
| process. All parameters have a ema backup, which update by the formula | |
| as below. EMAHook takes priority over EvalHook and CheckpointSaverHook. | |
| .. math:: | |
| \text{Xema\_{t+1}} = (1 - \text{momentum}) \times | |
| \text{Xema\_{t}} + \text{momentum} \times X_t | |
| Args: | |
| momentum (float): The momentum used for updating ema parameter. | |
| Defaults to 0.0002. | |
| interval (int): Update ema parameter every interval iteration. | |
| Defaults to 1. | |
| warm_up (int): During first warm_up steps, we may use smaller momentum | |
| to update ema parameters more slowly. Defaults to 100. | |
| resume_from (str): The checkpoint path. Defaults to None. | |
| """ | |
| def __init__(self, | |
| momentum=0.0002, | |
| interval=1, | |
| warm_up=100, | |
| resume_from=None): | |
| assert isinstance(interval, int) and interval > 0 | |
| self.warm_up = warm_up | |
| self.interval = interval | |
| assert momentum > 0 and momentum < 1 | |
| self.momentum = momentum**interval | |
| self.checkpoint = resume_from | |
| def before_run(self, runner): | |
| """To resume model with it's ema parameters more friendly. | |
| Register ema parameter as ``named_buffer`` to model | |
| """ | |
| model = runner.model | |
| if is_module_wrapper(model): | |
| model = model.module | |
| self.param_ema_buffer = {} | |
| self.model_parameters = dict(model.named_parameters(recurse=True)) | |
| for name, value in self.model_parameters.items(): | |
| # "." is not allowed in module's buffer name | |
| buffer_name = f"ema_{name.replace('.', '_')}" | |
| self.param_ema_buffer[name] = buffer_name | |
| model.register_buffer(buffer_name, value.data.clone()) | |
| self.model_buffers = dict(model.named_buffers(recurse=True)) | |
| if self.checkpoint is not None: | |
| runner.resume(self.checkpoint) | |
| def after_train_iter(self, runner): | |
| """Update ema parameter every self.interval iterations.""" | |
| curr_step = runner.iter | |
| # We warm up the momentum considering the instability at beginning | |
| momentum = min(self.momentum, | |
| (1 + curr_step) / (self.warm_up + curr_step)) | |
| if curr_step % self.interval != 0: | |
| return | |
| for name, parameter in self.model_parameters.items(): | |
| buffer_name = self.param_ema_buffer[name] | |
| buffer_parameter = self.model_buffers[buffer_name] | |
| buffer_parameter.mul_(1 - momentum).add_(momentum, parameter.data) | |
| def after_train_epoch(self, runner): | |
| """We load parameter values from ema backup to model before the | |
| EvalHook.""" | |
| self._swap_ema_parameters() | |
| def before_train_epoch(self, runner): | |
| """We recover model's parameter from ema backup after last epoch's | |
| EvalHook.""" | |
| self._swap_ema_parameters() | |
| def _swap_ema_parameters(self): | |
| """Swap the parameter of model with parameter in ema_buffer.""" | |
| for name, value in self.model_parameters.items(): | |
| temp = value.data.clone() | |
| ema_buffer = self.model_buffers[self.param_ema_buffer[name]] | |
| value.data.copy_(ema_buffer.data) | |
| ema_buffer.data.copy_(temp) | |