# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import torch import argparse import imageio.v3 as iio import numpy as np from cotracker.utils.visualizer import Visualizer from cotracker.predictor import CoTrackerOnlinePredictor # Unfortunately MPS acceleration does not support all the features we require, # but we may be able to enable it in the future DEFAULT_DEVICE = ( # "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" "cuda" if torch.cuda.is_available() else "cpu" ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--video_path", default="./assets/apple.mp4", help="path to a video", ) parser.add_argument( "--checkpoint", default=None, help="CoTracker model parameters", ) parser.add_argument("--grid_size", type=int, default=10, help="Regular grid size") parser.add_argument( "--grid_query_frame", type=int, default=0, help="Compute dense and grid tracks starting from this frame", ) args = parser.parse_args() if not os.path.isfile(args.video_path): raise ValueError("Video file does not exist") if args.checkpoint is not None: model = CoTrackerOnlinePredictor(checkpoint=args.checkpoint) else: model = torch.hub.load("facebookresearch/co-tracker", "cotracker2_online") model = model.to(DEFAULT_DEVICE) window_frames = [] def _process_step(window_frames, is_first_step, grid_size, grid_query_frame): video_chunk = ( torch.tensor(np.stack(window_frames[-model.step * 2 :]), device=DEFAULT_DEVICE) .float() .permute(0, 3, 1, 2)[None] ) # (1, T, 3, H, W) return model( video_chunk, is_first_step=is_first_step, grid_size=grid_size, grid_query_frame=grid_query_frame, ) # Iterating over video frames, processing one window at a time: is_first_step = True for i, frame in enumerate( iio.imiter( args.video_path, plugin="FFMPEG", ) ): if i % model.step == 0 and i != 0: pred_tracks, pred_visibility = _process_step( window_frames, is_first_step, grid_size=args.grid_size, grid_query_frame=args.grid_query_frame, ) is_first_step = False window_frames.append(frame) # Processing the final video frames in case video length is not a multiple of model.step pred_tracks, pred_visibility = _process_step( window_frames[-(i % model.step) - model.step - 1 :], is_first_step, grid_size=args.grid_size, grid_query_frame=args.grid_query_frame, ) print("Tracks are computed") # save a video with predicted tracks seq_name = os.path.splitext(args.video_path.split("/")[-1])[0] video = torch.tensor(np.stack(window_frames), device=DEFAULT_DEVICE).permute(0, 3, 1, 2)[None] vis = Visualizer(save_dir="./saved_videos", pad_value=120, linewidth=3) vis.visualize(video, pred_tracks, pred_visibility, query_frame=args.grid_query_frame, filename=seq_name)