import torch import torch.nn as nn from .bert import BERT class BERTForClassification(nn.Module): """ Fine-tune Task Classifier Model """ def __init__(self, bert: BERT, vocab_size, n_labels): """ :param bert: BERT model which should be trained :param vocab_size: total vocab size :param n_labels: number of labels for the task """ super().__init__() self.bert = bert self.linear = nn.Linear(self.bert.hidden, n_labels) def forward(self, x, segment_label): x = self.bert(x, segment_label) return self.linear(x[:, 0]) class BERTForClassificationWithFeats(nn.Module): """ Fine-tune Task Classifier Model BERT embeddings concatenated with features """ def __init__(self, bert: BERT, n_labels, feat_size=9): """ :param bert: BERT model which should be trained :param vocab_size: total vocab size :param n_labels: number of labels for the task """ super().__init__() self.bert = bert # self.linear1 = nn.Linear(self.bert.hidden+feat_size, 128) self.linear = nn.Linear(self.bert.hidden+feat_size, n_labels) # self.RELU = nn.ReLU() # self.linear2 = nn.Linear(128, n_labels) def forward(self, x, segment_label, feat): x = self.bert(x, segment_label) x = torch.cat((x[:, 0], feat), dim=-1) # x = self.linear1(x) # x = self.RELU(x) # return self.linear2(x) return self.linear(x)