#!/usr/bin/env python3 # -*- coding: utf-8 -*- import math import torch.nn as nn import torch.nn.functional as F class SRVGGNetCompact(nn.Module): """A compact VGG-style network structure for super-resolution. It is a compact network structure, which performs upsampling in the last layer and no convolution is conducted on the HR feature space. Args: num_in_ch (int): Channel number of inputs. Default: 3. num_out_ch (int): Channel number of outputs. Default: 3. num_feat (int): Channel number of intermediate features. Default: 64. num_conv (int): Number of convolution layers in the body network. Default: 16. upscale (int): Upsampling factor. Default: 4. act_type (str): Activation type, options: 'relu', 'prelu', 'leakyrelu'. Default: prelu. """ def __init__( self, state_dict, act_type: str = "prelu", ): super(SRVGGNetCompact, self).__init__() self.model_arch = "SRVGG (RealESRGAN)" self.sub_type = "SR" self.act_type = act_type self.state = state_dict if "params" in self.state: self.state = self.state["params"] self.key_arr = list(self.state.keys()) self.in_nc = self.get_in_nc() self.num_feat = self.get_num_feats() self.num_conv = self.get_num_conv() self.out_nc = self.in_nc # :( self.pixelshuffle_shape = None # Defined in get_scale() self.scale = self.get_scale() self.supports_fp16 = True self.supports_bfp16 = True self.min_size_restriction = None self.body = nn.ModuleList() # the first conv self.body.append(nn.Conv2d(self.in_nc, self.num_feat, 3, 1, 1)) # the first activation if act_type == "relu": activation = nn.ReLU(inplace=True) elif act_type == "prelu": activation = nn.PReLU(num_parameters=self.num_feat) elif act_type == "leakyrelu": activation = nn.LeakyReLU(negative_slope=0.1, inplace=True) self.body.append(activation) # type: ignore # the body structure for _ in range(self.num_conv): self.body.append(nn.Conv2d(self.num_feat, self.num_feat, 3, 1, 1)) # activation if act_type == "relu": activation = nn.ReLU(inplace=True) elif act_type == "prelu": activation = nn.PReLU(num_parameters=self.num_feat) elif act_type == "leakyrelu": activation = nn.LeakyReLU(negative_slope=0.1, inplace=True) self.body.append(activation) # type: ignore # the last conv self.body.append(nn.Conv2d(self.num_feat, self.pixelshuffle_shape, 3, 1, 1)) # type: ignore # upsample self.upsampler = nn.PixelShuffle(self.scale) self.load_state_dict(self.state, strict=False) def get_num_conv(self) -> int: return (int(self.key_arr[-1].split(".")[1]) - 2) // 2 def get_num_feats(self) -> int: return self.state[self.key_arr[0]].shape[0] def get_in_nc(self) -> int: return self.state[self.key_arr[0]].shape[1] def get_scale(self) -> int: self.pixelshuffle_shape = self.state[self.key_arr[-1]].shape[0] # Assume out_nc is the same as in_nc # I cant think of a better way to do that self.out_nc = self.in_nc scale = math.sqrt(self.pixelshuffle_shape / self.out_nc) if scale - int(scale) > 0: print( "out_nc is probably different than in_nc, scale calculation might be wrong" ) scale = int(scale) return scale def forward(self, x): out = x for i in range(0, len(self.body)): out = self.body[i](out) out = self.upsampler(out) # add the nearest upsampled image, so that the network learns the residual base = F.interpolate(x, scale_factor=self.scale, mode="nearest") out += base return out