# Code 1 - Let's create an UI using Gradio import gradio as gr import torch from transformers import pipeline # Code 2 - create a summarizer object # use torch dtype bfloat16 to compress the model. summarizer = pipeline(task="summarization", model="facebook/bart-large-cnn", torch_dtype=torch.bfloat16) # Code 5 - define a function to summarize text def nlp(input_text): summary = summarizer( input_text, repetition_penalty=5.0, # Increase this to discourage repetition length_penalty=0.3, # Decrease this to generate longer summaries min_length=20, max_length=100 ) return summary[0]["summary_text"] # Code 6 - UI object ui = gr.Interface(nlp, inputs=gr.Textbox(label="Input Text"), outputs=gr.Textbox(label="Summary"), title="Text Summarizer", description="Summarize your text using the BART model.") # Code 7 - launch UI ui.launch()