surahj
commited on
Commit
·
79b8226
1
Parent(s):
9ccab89
Add YAML metadata to README.md and create app.py entry point for HF Spaces
Browse files
README.md
CHANGED
|
@@ -1,58 +1,77 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
-
|
| 17 |
-
-
|
| 18 |
-
|
| 19 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
## 🏗️ Project Structure
|
| 22 |
|
| 23 |
```
|
| 24 |
-
lin-re-model/
|
| 25 |
├── src/
|
| 26 |
-
│ ├──
|
| 27 |
-
│ ├──
|
| 28 |
-
│
|
| 29 |
-
│ └── app.py # Gradio web interface
|
| 30 |
├── tests/
|
| 31 |
-
│ ├──
|
| 32 |
-
│ ├──
|
| 33 |
-
│
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
├── pytest.ini # Pytest configuration
|
| 38 |
-
├── run_tests.py # Test runner script
|
| 39 |
-
└── README.md # This file
|
| 40 |
```
|
| 41 |
|
| 42 |
-
##
|
| 43 |
-
|
| 44 |
-
### Prerequisites
|
| 45 |
|
| 46 |
-
|
| 47 |
-
- pip (Python package installer)
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
1. **Clone the repository** (if not already done):
|
| 52 |
|
| 53 |
```bash
|
| 54 |
-
git clone
|
| 55 |
-
cd
|
| 56 |
```
|
| 57 |
|
| 58 |
2. **Install dependencies**:
|
|
@@ -64,235 +83,67 @@ lin-re-model/
|
|
| 64 |
3. **Run the application**:
|
| 65 |
|
| 66 |
```bash
|
| 67 |
-
python
|
| 68 |
```
|
| 69 |
|
| 70 |
-
4. **
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
This project includes comprehensive tests to ensure code quality and functionality. The test suite covers:
|
| 75 |
-
|
| 76 |
-
- **Unit Tests**: Individual component testing
|
| 77 |
-
- **Integration Tests**: End-to-end workflow testing
|
| 78 |
-
- **Data Quality Tests**: Validation of synthetic data generation
|
| 79 |
-
- **Model Performance Tests**: Verification of model accuracy and consistency
|
| 80 |
-
|
| 81 |
-
### Running Tests
|
| 82 |
-
|
| 83 |
-
#### Option 1: Using the test runner script
|
| 84 |
-
|
| 85 |
-
```bash
|
| 86 |
-
# Run all tests with coverage
|
| 87 |
-
python run_tests.py
|
| 88 |
-
|
| 89 |
-
# Run only unit tests
|
| 90 |
-
python run_tests.py unit
|
| 91 |
-
|
| 92 |
-
# Run only integration tests
|
| 93 |
-
python run_tests.py integration
|
| 94 |
-
```
|
| 95 |
-
|
| 96 |
-
#### Option 2: Using pytest directly
|
| 97 |
-
|
| 98 |
-
```bash
|
| 99 |
-
# Run all tests
|
| 100 |
-
pytest
|
| 101 |
-
|
| 102 |
-
# Run with verbose output
|
| 103 |
-
pytest -v
|
| 104 |
-
|
| 105 |
-
# Run with coverage report
|
| 106 |
-
pytest --cov=src --cov-report=html
|
| 107 |
-
|
| 108 |
-
# Run specific test file
|
| 109 |
-
pytest tests/test_model.py
|
| 110 |
-
|
| 111 |
-
# Run specific test class
|
| 112 |
-
pytest tests/test_model.py::TestElectricityConsumptionModel
|
| 113 |
-
|
| 114 |
-
# Run specific test method
|
| 115 |
-
pytest tests/test_model.py::TestElectricityConsumptionModel::test_train_model
|
| 116 |
-
```
|
| 117 |
-
|
| 118 |
-
### Test Coverage
|
| 119 |
-
|
| 120 |
-
The test suite provides comprehensive coverage including:
|
| 121 |
-
|
| 122 |
-
- **Data Generator Tests**:
|
| 123 |
-
|
| 124 |
-
- Data generation with different parameters
|
| 125 |
-
- Data splitting functionality
|
| 126 |
-
- Data persistence (save/load)
|
| 127 |
-
- Data quality validation
|
| 128 |
-
- Reproducibility checks
|
| 129 |
-
|
| 130 |
-
- **Model Tests**:
|
| 131 |
-
|
| 132 |
-
- Model initialization and training
|
| 133 |
-
- Feature preparation and validation
|
| 134 |
-
- Prediction functionality
|
| 135 |
-
- Model evaluation metrics
|
| 136 |
-
- Model persistence (save/load)
|
| 137 |
-
- Error handling
|
| 138 |
-
|
| 139 |
-
- **Application Tests**:
|
| 140 |
-
|
| 141 |
-
- Web interface functionality
|
| 142 |
-
- User interaction flows
|
| 143 |
-
- Error handling in UI
|
| 144 |
-
- State management
|
| 145 |
-
|
| 146 |
-
- **Integration Tests**:
|
| 147 |
-
- Complete workflow testing
|
| 148 |
-
- End-to-end functionality
|
| 149 |
-
- Performance consistency
|
| 150 |
-
- Data quality across components
|
| 151 |
-
|
| 152 |
-
### Expected Test Results
|
| 153 |
-
|
| 154 |
-
When all tests pass, you should see output similar to:
|
| 155 |
-
|
| 156 |
-
```
|
| 157 |
-
🧪 Running Daily Household Electricity Consumption Predictor Tests
|
| 158 |
-
======================================================================
|
| 159 |
-
============================= test session starts ==============================
|
| 160 |
-
platform linux -- Python 3.8.x, pytest-7.4.0, pluggy-1.0.0
|
| 161 |
-
rootdir: /path/to/lin-re-model
|
| 162 |
-
plugins: cov-4.1.0
|
| 163 |
-
collected 45 tests
|
| 164 |
-
|
| 165 |
-
tests/test_app.py ................... [ 42%]
|
| 166 |
-
tests/test_data_generator.py ................... [ 78%]
|
| 167 |
-
tests/test_integration.py .......... [100%]
|
| 168 |
-
|
| 169 |
-
---------- coverage: platform linux, python 3.8.x-final-0 -----------
|
| 170 |
-
Name Stmts Miss Cover Missing
|
| 171 |
-
------------------------------------------------------------
|
| 172 |
-
src/__init__.py 1 0 100%
|
| 173 |
-
src/app.py 180 5 97% 180-185
|
| 174 |
-
src/data_generator.py 95 2 98% 95-97
|
| 175 |
-
src/model.py 180 8 96% 180-188
|
| 176 |
-
------------------------------------------------------------
|
| 177 |
-
TOTAL 456 15 97%
|
| 178 |
-
|
| 179 |
-
============================== 45 passed in 5.23s ==============================
|
| 180 |
-
|
| 181 |
-
✅ All tests passed!
|
| 182 |
-
```
|
| 183 |
-
|
| 184 |
-
## 📊 Model Features
|
| 185 |
-
|
| 186 |
-
The electricity consumption prediction model uses the following features:
|
| 187 |
-
|
| 188 |
-
1. **Average Daily Temperature** (°C): Numerical input (15-35°C range)
|
| 189 |
-
2. **Day of the Week**: Categorical input (Monday through Sunday)
|
| 190 |
-
3. **Major Event**: Boolean input (Holiday, Power Outage, etc.)
|
| 191 |
-
|
| 192 |
-
### Model Algorithm
|
| 193 |
-
|
| 194 |
-
- **Algorithm**: Linear Regression
|
| 195 |
-
- **Preprocessing**: StandardScaler for numerical features, OneHotEncoder for categorical features
|
| 196 |
-
- **Evaluation Metrics**: MSE, RMSE, MAE, R²
|
| 197 |
-
|
| 198 |
-
## 🎮 Using the Application
|
| 199 |
-
|
| 200 |
-
### Step 1: Generate Data & Train Model
|
| 201 |
|
| 202 |
-
|
| 203 |
-
2. Adjust parameters as desired:
|
| 204 |
-
- Number of Data Points (100-5000)
|
| 205 |
-
- Noise Level (0.01-0.5)
|
| 206 |
-
- Training/Validation/Test Set Proportions
|
| 207 |
-
3. Click "Generate Data & Train Model"
|
| 208 |
-
4. Review the training metrics and evaluation results
|
| 209 |
|
| 210 |
-
|
| 211 |
|
| 212 |
-
|
| 213 |
-
2. Enter your parameters:
|
| 214 |
-
- Average Daily Temperature (15-35°C)
|
| 215 |
-
- Day of the Week
|
| 216 |
-
- Major Event (checkbox)
|
| 217 |
-
3. Click "Predict Consumption"
|
| 218 |
-
4. View your estimated daily electricity consumption
|
| 219 |
|
| 220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
-
|
| 223 |
-
2. Click "Show Model Information"
|
| 224 |
-
3. Review feature coefficients and model interpretation
|
| 225 |
|
| 226 |
-
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
-
|
| 229 |
|
| 230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
|
| 232 |
-
|
| 233 |
-
2. **Integration Tests**: Add to `tests/test_integration.py`
|
| 234 |
-
3. **Follow naming convention**: `test_<functionality>`
|
| 235 |
-
4. **Use descriptive docstrings**: Explain what the test validates
|
| 236 |
|
| 237 |
-
|
| 238 |
|
| 239 |
-
-
|
| 240 |
-
-
|
| 241 |
-
-
|
| 242 |
-
- **Coverage**: Aim for high test coverage (>95%)
|
| 243 |
-
- **Performance**: Tests should run quickly (<10 seconds total)
|
| 244 |
|
| 245 |
-
|
| 246 |
|
| 247 |
-
|
| 248 |
|
| 249 |
```bash
|
| 250 |
-
#
|
| 251 |
-
pytest
|
| 252 |
-
|
| 253 |
-
# Run tests in parallel (if pytest-xdist installed)
|
| 254 |
-
pytest -n auto
|
| 255 |
-
|
| 256 |
-
# Run tests with detailed output
|
| 257 |
-
pytest -v -s
|
| 258 |
-
|
| 259 |
-
# Run tests and watch for changes
|
| 260 |
-
pytest-watch # Requires pytest-watch package
|
| 261 |
-
```
|
| 262 |
-
|
| 263 |
-
## 🚀 Deployment
|
| 264 |
|
| 265 |
-
|
|
|
|
| 266 |
|
| 267 |
-
|
| 268 |
-
|
| 269 |
```
|
| 270 |
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
1. Create a new Space on Hugging Face
|
| 274 |
-
2. Upload the project files
|
| 275 |
-
3. Configure the Space to run `python src/app.py`
|
| 276 |
-
4. The application will be available at your Space URL
|
| 277 |
-
|
| 278 |
-
## 📈 Future Enhancements
|
| 279 |
-
|
| 280 |
-
### MLOps Features (Future Phases)
|
| 281 |
-
|
| 282 |
-
- **Data Versioning**: Implement DVC for data version control
|
| 283 |
-
- **Experiment Tracking**: Integrate MLflow or Weights & Biases
|
| 284 |
-
- **Model Registry**: Use MLflow Model Registry for model lifecycle management
|
| 285 |
-
- **Containerization**: Create Dockerfile for reproducible environments
|
| 286 |
-
- **CI/CD**: Set up GitHub Actions for automated testing and deployment
|
| 287 |
-
- **Model Monitoring**: Implement monitoring for data drift and performance degradation
|
| 288 |
-
- **Continuous Training**: Define triggers for automated retraining
|
| 289 |
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
- **Feature Engineering**: Add more complex features (historical averages, time of day, etc.)
|
| 293 |
-
- **Advanced Models**: Experiment with Random Forest, Gradient Boosting, etc.
|
| 294 |
-
- **Hyperparameter Tuning**: Implement automated hyperparameter optimization
|
| 295 |
-
- **Ensemble Methods**: Combine multiple models for better predictions
|
| 296 |
|
| 297 |
## 🤝 Contributing
|
| 298 |
|
|
@@ -300,15 +151,16 @@ python src/app.py
|
|
| 300 |
2. Create a feature branch
|
| 301 |
3. Make your changes
|
| 302 |
4. Add tests for new functionality
|
| 303 |
-
5.
|
| 304 |
-
6. Submit a pull request
|
| 305 |
|
| 306 |
-
##
|
| 307 |
|
| 308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
|
| 310 |
-
|
| 311 |
|
| 312 |
-
|
| 313 |
-
- Scikit-learn team for the machine learning library
|
| 314 |
-
- The MLOps community for best practices and guidance
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: 'Electricity Consumption Predictor'
|
| 3 |
+
emoji: '⚡'
|
| 4 |
+
colorFrom: 'blue'
|
| 5 |
+
colorTo: 'purple'
|
| 6 |
+
sdk: 'gradio'
|
| 7 |
+
sdk_version: '3.40.1'
|
| 8 |
+
app_file: 'app.py'
|
| 9 |
+
pinned: false
|
| 10 |
+
license: 'mit'
|
| 11 |
+
tags:
|
| 12 |
+
- machine-learning
|
| 13 |
+
- regression
|
| 14 |
+
- electricity
|
| 15 |
+
- consumption
|
| 16 |
+
- prediction
|
| 17 |
+
- gradio
|
| 18 |
+
datasets:
|
| 19 |
+
- synthetic-electricity-data
|
| 20 |
+
metrics:
|
| 21 |
+
- mse
|
| 22 |
+
- rmse
|
| 23 |
+
- mae
|
| 24 |
+
- r2
|
| 25 |
+
---
|
| 26 |
+
|
| 27 |
+
# ⚡ Electricity Consumption Predictor
|
| 28 |
+
|
| 29 |
+
A machine learning application that predicts daily electricity consumption based on various factors like temperature, day of the week, and special events.
|
| 30 |
+
|
| 31 |
+
## 🚀 Live Demo
|
| 32 |
+
|
| 33 |
+
[](https://huggingface.co/spaces/surahj/electricity-consumption-predictor)
|
| 34 |
+
|
| 35 |
+
## 📊 Features
|
| 36 |
+
|
| 37 |
+
- **Temperature-based predictions**: Considers how temperature affects electricity usage
|
| 38 |
+
- **Day of week analysis**: Accounts for different consumption patterns on weekdays vs weekends
|
| 39 |
+
- **Special events**: Factors in holidays and major events
|
| 40 |
+
- **Interactive interface**: User-friendly Gradio web interface
|
| 41 |
+
- **Model insights**: Detailed explanation of prediction factors
|
| 42 |
+
|
| 43 |
+
## 🛠️ Technology Stack
|
| 44 |
+
|
| 45 |
+
- **Machine Learning**: scikit-learn (Linear Regression)
|
| 46 |
+
- **Data Processing**: pandas, numpy
|
| 47 |
+
- **Web Interface**: Gradio
|
| 48 |
+
- **Model Persistence**: joblib
|
| 49 |
|
| 50 |
## 🏗️ Project Structure
|
| 51 |
|
| 52 |
```
|
|
|
|
| 53 |
├── src/
|
| 54 |
+
│ ├── app.py # Main Gradio application
|
| 55 |
+
│ ├── model.py # ML model implementation
|
| 56 |
+
│ └── data_generator.py # Synthetic data generation
|
|
|
|
| 57 |
├── tests/
|
| 58 |
+
│ ├── test_model.py # Model unit tests
|
| 59 |
+
│ ├── test_app.py # App unit tests
|
| 60 |
+
│ └── test_integration.py # Integration tests
|
| 61 |
+
├── app.py # Hugging Face Spaces entry point
|
| 62 |
+
├── requirements.txt # Python dependencies
|
| 63 |
+
└── README.md # This file
|
|
|
|
|
|
|
|
|
|
| 64 |
```
|
| 65 |
|
| 66 |
+
## 🧪 Usage
|
|
|
|
|
|
|
| 67 |
|
| 68 |
+
### Local Development
|
|
|
|
| 69 |
|
| 70 |
+
1. **Clone the repository**:
|
|
|
|
|
|
|
| 71 |
|
| 72 |
```bash
|
| 73 |
+
git clone https://github.com/YOUR_USERNAME/electricity-consumption-predictor.git
|
| 74 |
+
cd electricity-consumption-predictor
|
| 75 |
```
|
| 76 |
|
| 77 |
2. **Install dependencies**:
|
|
|
|
| 83 |
3. **Run the application**:
|
| 84 |
|
| 85 |
```bash
|
| 86 |
+
python app.py
|
| 87 |
```
|
| 88 |
|
| 89 |
+
4. **Run tests**:
|
| 90 |
+
```bash
|
| 91 |
+
pytest tests/
|
| 92 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
+
### Hugging Face Spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
+
The app is automatically deployed on Hugging Face Spaces. Simply visit the live demo link above to use the application.
|
| 97 |
|
| 98 |
+
## 📈 How It Works
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
+
1. **Data Generation**: Creates synthetic electricity consumption data with realistic patterns
|
| 101 |
+
2. **Model Training**: Trains a linear regression model on historical data
|
| 102 |
+
3. **Feature Engineering**: Extracts relevant features (temperature, day of week, events)
|
| 103 |
+
4. **Prediction**: Uses the trained model to predict consumption for new scenarios
|
| 104 |
+
5. **Interpretation**: Provides detailed breakdown of prediction factors
|
| 105 |
|
| 106 |
+
## 🎯 Model Features
|
|
|
|
|
|
|
| 107 |
|
| 108 |
+
- **Temperature Effect**: Higher temperatures increase AC usage
|
| 109 |
+
- **Day of Week**: Weekends typically have different consumption patterns
|
| 110 |
+
- **Base Consumption**: Minimum daily electricity usage
|
| 111 |
+
- **Event Impact**: Special events can significantly affect consumption
|
| 112 |
|
| 113 |
+
## 📊 Example Predictions
|
| 114 |
|
| 115 |
+
| Temperature | Day | Event | Predicted Consumption |
|
| 116 |
+
| ----------- | --------- | ------- | --------------------- |
|
| 117 |
+
| 25°C | Monday | None | 16.5 kWh |
|
| 118 |
+
| 35°C | Saturday | Holiday | 22.3 kWh |
|
| 119 |
+
| 15°C | Wednesday | None | 14.1 kWh |
|
| 120 |
|
| 121 |
+
## 🔧 Configuration
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
+
The model can be customized by modifying parameters in `src/model.py`:
|
| 124 |
|
| 125 |
+
- Training data size
|
| 126 |
+
- Feature weights
|
| 127 |
+
- Model hyperparameters
|
|
|
|
|
|
|
| 128 |
|
| 129 |
+
## 🧪 Testing
|
| 130 |
|
| 131 |
+
Run the test suite to ensure everything works correctly:
|
| 132 |
|
| 133 |
```bash
|
| 134 |
+
# Run all tests
|
| 135 |
+
pytest tests/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
+
# Run with coverage
|
| 138 |
+
pytest tests/ --cov=src
|
| 139 |
|
| 140 |
+
# Run specific test file
|
| 141 |
+
pytest tests/test_model.py
|
| 142 |
```
|
| 143 |
|
| 144 |
+
## 📝 License
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
+
This project is licensed under the MIT License - see the LICENSE file for details.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
## 🤝 Contributing
|
| 149 |
|
|
|
|
| 151 |
2. Create a feature branch
|
| 152 |
3. Make your changes
|
| 153 |
4. Add tests for new functionality
|
| 154 |
+
5. Submit a pull request
|
|
|
|
| 155 |
|
| 156 |
+
## 📞 Support
|
| 157 |
|
| 158 |
+
If you encounter any issues or have questions:
|
| 159 |
+
|
| 160 |
+
- Open an issue on GitHub
|
| 161 |
+
- Check the Hugging Face Spaces discussion
|
| 162 |
+
- Review the test files for usage examples
|
| 163 |
|
| 164 |
+
---
|
| 165 |
|
| 166 |
+
**Built with ❤️ using Gradio and scikit-learn**
|
|
|
|
|
|