import torch import gradio as gr import torch.nn.functional as F from transformers import BertTokenizer, GPT2LMHeadModel,PreTrainedTokenizerFast # tokenizer = BertTokenizer.from_pretrained("supermy/poetry") tokenizer = PreTrainedTokenizerFast(tokenizer_file="poetry-bpe.json",add_special_token=True, bos_token="<|endoftext|>", eos_token="<|endoftext|>", pad_token="[PAD]", cls_token="[CLS]", sep_token="[SEP]", unk_token="[UNK]", padding_side="left", ) model = GPT2LMHeadModel.from_pretrained("supermy/poetry") model.eval() def top_k_top_p_filtering( logits, top_k=0, top_p=0.0, filter_value=-float('Inf') ): assert logits.dim() == 1 top_k = min( top_k, logits.size(-1) ) if top_k > 0: indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value if top_p > 0.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum( F.softmax(sorted_logits, dim=-1), dim=-1 ) sorted_indices_to_remove = cumulative_probs > top_p sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 indices_to_remove = sorted_indices[sorted_indices_to_remove] logits[indices_to_remove] = filter_value return logits def generate(title, context, max_len): # input_ids.extend( tokenizer.encode(input_text + "-", add_special_tokens=False) ) title_ids = tokenizer.encode(title, add_special_tokens=False) context_ids = tokenizer.encode(context, add_special_tokens=False) input_ids = title_ids + [sep_id] + context_ids print(input_ids) cur_len = len(input_ids) input_len = cur_len last_token_id = input_ids[-1] input_ids = torch.tensor([input_ids], dtype=torch.long) # input_ids = [tokenizer.cls_token_id] # input_ids.extend( tokenizer.encode(title + "-" +context, add_special_tokens=False) ) # input_ids = torch.tensor( [input_ids] ) print(input_ids) while True: outputs = model( input_ids=input_ids[:, -200:] ) logits = outputs.logits next_token_logits = logits[0, -1, :] next_token_logits = next_token_logits / 1 next_token_logits[unk_id] = -float('Inf') filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=0, top_p=0.85) next_token_id = torch.multinomial( F.softmax(filtered_logits, dim=-1), num_samples=1 ) input_ids = torch.cat( ( input_ids, next_token_id.unsqueeze(0) ), dim=1 ) cur_len += 1 word = tokenizer.convert_ids_to_tokens( next_token_id.item() ) if cur_len >= ( input_len + max_len ) and last_token_id == 8 and next_token_id == 3: break if cur_len >= ( input_len + max_len ) and word in [".", "。", "!", "!", "?", "?", ",", ","]: break if next_token_id == eod_id: break result = tokenizer.decode( input_ids.squeeze(0) ) return result if __name__ == '__main__': # tokenizer = BertTokenizer(vocab_file="chinese_vocab.model") eod_id = tokenizer.convert_tokens_to_ids("") sep_id = tokenizer.sep_token_id unk_id = tokenizer.unk_token_id gr.Interface( fn=generate, inputs=[ gr.Textbox(lines=1, placeholder="输入文本标题:爱莲说", value="爱莲说",label="文本标题"), gr.Textbox(lines=7, placeholder="输入文本内容:水陆草木之花,可爱者甚蕃。晋陶渊明独爱菊。", value="水陆草木之花,可爱者甚蕃。晋陶渊明独爱菊。",label="初始文本"), "number" ], outputs=gr.Textbox(lines=15, placeholder="AI生成的文本显示在这里。",label="生成的文本") ).launch()