import numpy as np import torch import os import sys import ntpath import time from . import util, html from subprocess import Popen, PIPE from func_timeout import func_timeout, FunctionTimedOut if sys.version_info[0] == 2: VisdomExceptionBase = Exception else: VisdomExceptionBase = ConnectionError def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256): """Save images to the disk. Parameters: webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details) visuals (OrderedDict) -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs image_path (str) -- the string is used to create image paths aspect_ratio (float) -- the aspect ratio of saved images width (int) -- the images will be resized to width x width This function will save images stored in 'visuals' to the HTML file specified by 'webpage'. """ image_dir = webpage.get_image_dir() short_path = ntpath.basename(image_path[0]) name = os.path.splitext(short_path)[0] webpage.add_header(name) ims, txts, links = [], [], [] for label, im_data in visuals.items(): im = util.tensor2im(im_data) image_name = '%s/%s.png' % (label, name) os.makedirs(os.path.join(image_dir, label), exist_ok=True) save_path = os.path.join(image_dir, image_name) util.save_image(im, save_path, aspect_ratio=aspect_ratio) ims.append(image_name) txts.append(label) links.append(image_name) webpage.add_images(ims, txts, links, width=width) class Visualizer(): """This class includes several functions that can display/save images and print/save logging information. It uses a Python library 'visdom' for display, and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images. """ @staticmethod def modify_commandline_options(parser, is_train): parser.add_argument("--display_port", default=2004) parser.add_argument("--display_ncols", default=2) parser.add_argument("--display_env", default="main") parser.add_argument("--no_html", type=util.str2bool, nargs='?', const=True, default=True) return parser def __init__(self, opt): """Initialize the Visualizer class Parameters: opt -- stores all the experiment flags; needs to be a subclass of BaseOptions Step 1: Cache the training/test options Step 2: connect to a visdom server Step 3: create an HTML object for saveing HTML filters Step 4: create a logging file to store training losses """ self.opt = opt # cache the option self.display_id = np.random.randint(1000000) * 10 # just a random display id self.use_html = opt.isTrain and not opt.no_html self.win_size = opt.crop_size self.name = opt.name self.port = opt.display_port self.saved = False if self.display_id > 0: # connect to a visdom server import visdom self.plot_data = {} self.ncols = opt.display_ncols if "tensorboard_base_url" in os.environ: self.vis = visdom.Visdom( port=2004, base_url=os.environ['tensorboard_base_url'] + '/visdom', env=opt.display_env, #raise_exceptions=False, ) print("setting up visdom server for sensei") else: self.vis = visdom.Visdom( server="http://localhost", port=opt.display_port, env=opt.display_env, raise_exceptions=False) if not self.vis.check_connection(): self.create_visdom_connections() if self.use_html: # Create an HTML object at /web/; # Images will be saved under /web/images/ self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web') self.img_dir = os.path.join(self.web_dir, 'images') print('create web directory %s...' % self.web_dir) util.mkdirs([self.web_dir, self.img_dir]) # create a logging file to store training losses self.log_name = os.path.join( opt.checkpoints_dir, opt.name, 'loss_log.txt') with open(self.log_name, "a") as log_file: now = time.strftime("%c") log_file.write('================ Training Loss (%s) ================\n' % now) def reset(self): """Reset the self.saved status""" self.saved = False def create_visdom_connections(self): """If the program could not connect to Visdom server, this function will start a new server at port < self.port > """ cmd = sys.executable + ' -m visdom.server -p %d &>/dev/null &' % self.port print('\n\nCould not connect to Visdom server. ' '\n Trying to start a server....') print('Command: %s' % cmd) Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE) def display_current_results(self, visuals, epoch, save_result=None, max_num_images=4): """Display current results on visdom; save current results to an HTML file. Parameters: visuals (OrderedDict) - - dictionary of images to display or save epoch (int) - - the current epoch save_result (bool) - - if save the current results to an HTML file """ if save_result is None: save_result = not self.opt.no_html if self.display_id > 0: # show images in the browser using visdom ncols = self.ncols if ncols > 0: # show all the images in one visdom panel ncols = min(ncols, len(visuals)) h, w = next(iter(visuals.values())).shape[:2] table_css = """""" % (w, h) # create a table css # create a table of images. title = self.name label_html = '' label_html_row = '' images = [] idx = 0 for label, image in visuals.items(): if image.size(3) < 64: image = torch.nn.functional.interpolate( image, size=(64, 64), mode='bilinear', align_corners=False) image_numpy = util.tensor2im(image[:max_num_images]) label_html_row += '%s' % label images.append(image_numpy.transpose([2, 0, 1])) idx += 1 if idx % ncols == 0: label_html += '%s' % label_html_row label_html_row = '' white_image = np.ones_like( image_numpy.transpose([2, 0, 1])) * 255 while idx % ncols != 0: images.append(white_image) label_html_row += '' idx += 1 if label_html_row != '': label_html += '%s' % label_html_row try: func_timeout(15, self.vis.images, args=(images, ncols, 2, self.display_id + 1, None, dict(title=title + ' images'))) label_html = '%s
' % label_html self.vis.text(table_css + label_html, win=self.display_id + 2, opts=dict(title=title + ' labels')) except FunctionTimedOut: print("visdom call to display image timed out") pass except VisdomExceptionBase: self.create_visdom_connections() else: # show each image in a separate visdom panel; idx = 1 try: for label, image in visuals.items(): image_numpy = util.tensor2im(image[:4]) try: func_timeout(5, self.vis.image, args=( image_numpy.transpose([2, 0, 1]), self.display_id + idx, None, dict(title=label) )) except FunctionTimedOut: print("visdom call to display image timed out") pass idx += 1 except VisdomExceptionBase: self.create_visdom_connections() needs_save = save_result or not self.saved if self.use_html and needs_save: self.saved = True # save images to the disk for label, image in visuals.items(): image_numpy = util.tensor2im(image[:4]) img_path = os.path.join( self.img_dir, 'epoch%.3d_%s.png' % (epoch, label)) util.save_image(image_numpy, img_path) # update website webpage = html.HTML( self.web_dir, 'Experiment name = %s' % self.name, refresh=0) for n in range(epoch, 0, -1): webpage.add_header('epoch [%d]' % n) ims, txts, links = [], [], [] for label, image_numpy in visuals.items(): image_numpy = util.tensor2im(image) img_path = 'epoch%.3d_%s.png' % (n, label) ims.append(img_path) txts.append(label) links.append(img_path) webpage.add_images(ims, txts, links, width=self.win_size) webpage.save() def plot_current_losses(self, epoch, counter_ratio, losses): """display the current losses on visdom display: dictionary of error labels and values Parameters: epoch (int) -- current epoch counter_ratio (float) -- progress (percentage) in the current epoch, between 0 to 1 losses (OrderedDict) -- training losses stored in the format of (name, float) pairs """ if len(losses) == 0: return plot_name = '_'.join(list(losses.keys())) if plot_name not in self.plot_data: self.plot_data[plot_name] = {'X': [], 'Y': [], 'legend': list(losses.keys())} plot_data = self.plot_data[plot_name] plot_id = list(self.plot_data.keys()).index(plot_name) plot_data['X'].append(epoch + counter_ratio) plot_data['Y'].append([losses[k] for k in plot_data['legend']]) try: self.vis.line( X=np.stack([np.array(plot_data['X'])] * len(plot_data['legend']), 1), Y=np.array(plot_data['Y']), opts={ 'title': self.name, 'legend': plot_data['legend'], 'xlabel': 'epoch', 'ylabel': 'loss'}, win=self.display_id - plot_id) except VisdomExceptionBase: self.create_visdom_connections() # losses: same format as |losses| of plot_current_losses def print_current_losses(self, iters, times, losses): """print current losses on console; also save the losses to the disk Parameters: epoch (int) -- current epoch iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch) losses (OrderedDict) -- training losses stored in the format of (name, float) pairs t_comp (float) -- computational time per data point (normalized by batch_size) t_data (float) -- data loading time per data point (normalized by batch_size) """ message = '(iters: %d' % (iters) for k, v in times.items(): message += ", %s: %.3f" % (k, v) message += ") " for k, v in losses.items(): message += '%s: %.3f ' % (k, v.mean()) print(message) # print the message with open(self.log_name, "a") as log_file: log_file.write('%s\n' % message) # save the message