import torch import numpy as np def pairwise_distances(x, y): #Input: x is a Nxd matrix # y is an optional Mxd matirx #Output: dist is a NxM matrix where dist[i,j] is the square norm between x[i,:] and y[j,:] # if y is not given then use 'y=x'. #i.e. dist[i,j] = ||x[i,:]-y[j,:]||^2 x_norm = (x ** 2).sum(1).view(-1, 1) y_t = torch.transpose(y, 0, 1) y_norm = (y ** 2).sum(1).view(1, -1) dist = x_norm + y_norm - 2.0 * torch.mm(x, y_t) return torch.clamp(dist, 0.0, np.inf) def meanshift_cluster(pts, bandwidth, weights = None, meanshift_step = 15, step_size = 0.3): """ meanshift written in pytorch :param pts: input points :param weights: weight per point during clustering :return: clustered points """ pts_steps = [] for i in range(meanshift_step): Y = pairwise_distances(pts, pts) K = torch.nn.functional.relu(bandwidth ** 2 - Y) if weights is not None: K = K * weights P = torch.nn.functional.normalize(K, p=1, dim=0, eps=1e-10) P = P.transpose(0, 1) pts = step_size * (torch.matmul(P, pts) - pts) + pts pts_steps.append(pts) return pts_steps def distance(a,b): return torch.sqrt(((a-b)**2).sum()) def meanshift_assign(points, bandwidth): cluster_ids = [] cluster_idx = 0 cluster_centers = [] for i, point in enumerate(points): if(len(cluster_ids) == 0): cluster_ids.append(cluster_idx) cluster_centers.append(point) cluster_idx += 1 else: # assign to nearest cluster #for j,center in enumerate(cluster_centers): # dist = distance(point, center) # if(dist < bandwidth): # cluster_ids.append(j) cdist = torch.cdist(point.unsqueeze(0), torch.stack(cluster_centers), p = 2) nearest_idx = torch.argmin(cdist, dim = 1) if cdist[0, nearest_idx] < bandwidth: cluster_ids.append(nearest_idx) else: cluster_ids.append(cluster_idx) cluster_centers.append(point) cluster_idx += 1 return cluster_ids, cluster_centers