"""VQGAN Loss - Adapted from https://github.com/CompVis/taming-transformers """ import torch import torch.nn as nn import torch.nn.functional as F from .discriminator import NLayerDiscriminator, weights_init from .blocks import LossCriterion, LossCriterionMask class DummyLoss(nn.Module): def __init__(self): super().__init__() def adopt_weight(weight, global_step, threshold=0, value=0.): if global_step < threshold: weight = value return weight def hinge_d_loss(logits_real, logits_fake): loss_real = torch.mean(F.relu(1. - logits_real)) loss_fake = torch.mean(F.relu(1. + logits_fake)) d_loss = 0.5 * (loss_real + loss_fake) return d_loss def vanilla_d_loss(logits_real, logits_fake): d_loss = 0.5 * ( torch.mean(torch.nn.functional.softplus(-logits_real)) + torch.mean(torch.nn.functional.softplus(logits_fake))) return d_loss def fft_loss(pred, tgt): return ((torch.fft.fftn(pred, dim=(-2,-1)) - torch.fft.fftn(tgt, dim=(-2,-1)))).abs().mean() class LPIPSWithDiscriminator(nn.Module): def __init__(self, disc_start, model_path, pixelloss_weight=1.0, disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=0.8, perceptual_weight=1.0, use_actnorm=False, disc_conditional=False, disc_ndf=64, disc_loss="hinge", rec_loss="FFT", style_layers = [], content_layers = ['r41']): super().__init__() assert disc_loss in ["hinge", "vanilla"] self.pixel_weight = pixelloss_weight self.perceptual_loss = LossCriterion(style_layers, content_layers, 0, perceptual_weight, model_path = model_path) self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=use_actnorm, ndf=disc_ndf ).apply(weights_init) self.discriminator_iter_start = disc_start if disc_loss == "hinge": self.disc_loss = hinge_d_loss elif disc_loss == "vanilla": self.disc_loss = vanilla_d_loss else: raise ValueError(f"Unknown GAN loss '{disc_loss}'.") print(f"VQLPIPSWithDiscriminator running with {disc_loss} and {rec_loss} loss.") self.disc_factor = disc_factor self.discriminator_weight = disc_weight self.disc_conditional = disc_conditional self.rec_loss = rec_loss self.perceptual_weight = perceptual_weight def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): if last_layer is not None: nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] else: nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0] d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() d_weight = d_weight * self.discriminator_weight return d_weight def forward(self, inputs, reconstructions, optimizer_idx, global_step, last_layer=None, cond=None, split="train"): if self.rec_loss == "L1": rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()).mean() elif self.rec_loss == "MSE": rec_loss = F.mse_loss(reconstructions, inputs) elif self.rec_loss == "FFT": rec_loss = fft_loss(inputs, reconstructions) elif self.rec_loss is None: rec_loss = 0 else: raise ValueError("Unkown reconstruction loss, choices are [FFT, L1]") if self.perceptual_weight > 0: loss_dict = self.perceptual_loss(reconstructions, inputs, style = False) p_loss = loss_dict['content'] rec_loss = rec_loss + p_loss else: p_loss = torch.zeros(1).cuda() nll_loss = rec_loss # adversarial loss for both branches if optimizer_idx == 0: log = {} disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) # generator update if disc_factor > 0: logits_fake = self.discriminator(reconstructions.contiguous()) g_loss = -torch.mean(logits_fake) try: d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer) except RuntimeError: #assert not self.training d_weight = torch.tensor(0.0) loss = nll_loss + d_weight * disc_factor * g_loss log["d_weight"] = d_weight.detach() log["disc_factor"] = torch.tensor(disc_factor) log["g_loss"] = g_loss.detach().mean() else: loss = nll_loss log["total_loss"] = loss.clone().detach().mean() log["nll_loss"] = nll_loss.detach().mean() log["rec_loss"] = rec_loss.detach().mean() log["p_loss"] = p_loss.detach().mean() return loss, log if optimizer_idx == 1: # second pass for discriminator update logits_real = self.discriminator(inputs.contiguous().detach()) logits_fake = self.discriminator(reconstructions.contiguous().detach()) disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) log = {"disc_loss": d_loss.clone().detach().mean(), "logits_real": logits_real.detach().mean(), "logits_fake": logits_fake.detach().mean() } return d_loss, log class LPIPSWithDiscriminatorMask(nn.Module): def __init__(self, disc_start, model_path, pixelloss_weight=1.0, disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=0.8, perceptual_weight=1.0, use_actnorm=False, disc_conditional=False, disc_ndf=64, disc_loss="hinge", rec_loss="FFT", style_layers = [], content_layers = ['r41']): super().__init__() assert disc_loss in ["hinge", "vanilla"] self.pixel_weight = pixelloss_weight self.perceptual_loss = LossCriterionMask(style_layers, content_layers, 0.2, perceptual_weight, model_path = model_path) self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=use_actnorm, ndf=disc_ndf ).apply(weights_init) self.discriminator_iter_start = disc_start if disc_loss == "hinge": self.disc_loss = hinge_d_loss elif disc_loss == "vanilla": self.disc_loss = vanilla_d_loss else: raise ValueError(f"Unknown GAN loss '{disc_loss}'.") print(f"VQLPIPSWithDiscriminator running with {disc_loss} and {rec_loss} loss.") self.disc_factor = disc_factor self.discriminator_weight = disc_weight self.disc_conditional = disc_conditional self.rec_loss = rec_loss self.perceptual_weight = perceptual_weight def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): if last_layer is not None: nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] else: nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0] d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() d_weight = d_weight * self.discriminator_weight return d_weight def forward(self, inputs, reconstructions, optimizer_idx, global_step, mask, last_layer=None, cond=None, split="train"): if self.rec_loss == "L1": rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()).mean() elif self.rec_loss == "MSE": rec_loss = F.mse_loss(reconstructions, inputs) elif self.rec_loss == "FFT": rec_loss = fft_loss(inputs, reconstructions) elif self.rec_loss is None: rec_loss = 0 else: raise ValueError("Unkown reconstruction loss, choices are [FFT, L1]") if self.perceptual_weight > 0: loss_dict = self.perceptual_loss(reconstructions, inputs, mask, style = True) p_loss = loss_dict['content'] s_loss = loss_dict['style'] rec_loss = rec_loss + p_loss + s_loss else: p_loss = torch.zeros(1).cuda() nll_loss = rec_loss # adversarial loss for both branches if optimizer_idx == 0: # generator update logits_fake = self.discriminator(reconstructions.contiguous()) g_loss = -torch.mean(logits_fake) try: d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer) except RuntimeError: #assert not self.training d_weight = torch.tensor(0.0) disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) loss = nll_loss + d_weight * disc_factor * g_loss log = {"total_loss": loss.clone().detach().mean(), "nll_loss": nll_loss.detach().mean(), "rec_loss": rec_loss.detach().mean(), "p_loss": p_loss.detach().mean(), "s_loss": s_loss, "d_weight": d_weight.detach(), "disc_factor": torch.tensor(disc_factor), "g_loss": g_loss.detach().mean(), } return loss, log if optimizer_idx == 1: # second pass for discriminator update logits_real = self.discriminator(inputs.contiguous().detach()) logits_fake = self.discriminator(reconstructions.contiguous().detach()) disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) log = {"disc_loss": d_loss.clone().detach().mean(), "logits_real": logits_real.detach().mean(), "logits_fake": logits_fake.detach().mean() } return d_loss, log