# Original code: https://github.com/dyhan0920/PyramidNet-PyTorch/blob/master/PyramidNet.py import torch import torch.nn as nn import math def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): outchannel_ratio = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.bn1 = nn.BatchNorm2d(inplanes) self.conv1 = conv3x3(inplanes, planes, stride) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = conv3x3(planes, planes) self.bn3 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): out = self.bn1(x) out = self.conv1(out) out = self.bn2(out) out = self.relu(out) out = self.conv2(out) out = self.bn3(out) if self.downsample is not None: shortcut = self.downsample(x) featuremap_size = shortcut.size()[2:4] else: shortcut = x featuremap_size = out.size()[2:4] batch_size = out.size()[0] residual_channel = out.size()[1] shortcut_channel = shortcut.size()[1] if residual_channel != shortcut_channel: padding = torch.autograd.Variable(torch.cuda.FloatTensor(batch_size, residual_channel - shortcut_channel, featuremap_size[0], featuremap_size[1]).fill_(0)) out += torch.cat((shortcut, padding), 1) else: out += shortcut return out class Bottleneck(nn.Module): outchannel_ratio = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=16): super(Bottleneck, self).__init__() self.bn1 = nn.BatchNorm2d(inplanes) self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, (planes), kernel_size=3, stride=stride, padding=1, bias=False, groups=1) self.bn3 = nn.BatchNorm2d((planes)) self.conv3 = nn.Conv2d((planes), planes * Bottleneck.outchannel_ratio, kernel_size=1, bias=False) self.bn4 = nn.BatchNorm2d(planes * Bottleneck.outchannel_ratio) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): out = self.bn1(x) out = self.conv1(out) out = self.bn2(out) out = self.relu(out) out = self.conv2(out) out = self.bn3(out) out = self.relu(out) out = self.conv3(out) out = self.bn4(out) if self.downsample is not None: shortcut = self.downsample(x) featuremap_size = shortcut.size()[2:4] else: shortcut = x featuremap_size = out.size()[2:4] batch_size = out.size()[0] residual_channel = out.size()[1] shortcut_channel = shortcut.size()[1] if residual_channel != shortcut_channel: padding = torch.autograd.Variable(torch.cuda.FloatTensor(batch_size, residual_channel - shortcut_channel, featuremap_size[0], featuremap_size[1]).fill_(0)) out += torch.cat((shortcut, padding), 1) else: out += shortcut return out class PyramidNet(nn.Module): def __init__(self, dataset, depth, alpha, num_classes, bottleneck=False): super(PyramidNet, self).__init__() self.dataset = dataset if self.dataset.startswith('cifar'): self.inplanes = 16 if bottleneck == True: n = int((depth - 2) / 9) block = Bottleneck else: n = int((depth - 2) / 6) block = BasicBlock self.addrate = alpha / (3*n*1.0) self.input_featuremap_dim = self.inplanes self.conv1 = nn.Conv2d(3, self.input_featuremap_dim, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(self.input_featuremap_dim) self.featuremap_dim = self.input_featuremap_dim self.layer1 = self.pyramidal_make_layer(block, n) self.layer2 = self.pyramidal_make_layer(block, n, stride=2) self.layer3 = self.pyramidal_make_layer(block, n, stride=2) self.final_featuremap_dim = self.input_featuremap_dim self.bn_final= nn.BatchNorm2d(self.final_featuremap_dim) self.relu_final = nn.ReLU(inplace=True) self.avgpool = nn.AvgPool2d(8) self.fc = nn.Linear(self.final_featuremap_dim, num_classes) elif dataset == 'imagenet': blocks ={18: BasicBlock, 34: BasicBlock, 50: Bottleneck, 101: Bottleneck, 152: Bottleneck, 200: Bottleneck} layers ={18: [2, 2, 2, 2], 34: [3, 4, 6, 3], 50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3], 200: [3, 24, 36, 3]} if layers.get(depth) is None: if bottleneck == True: blocks[depth] = Bottleneck temp_cfg = int((depth-2)/12) else: blocks[depth] = BasicBlock temp_cfg = int((depth-2)/8) layers[depth]= [temp_cfg, temp_cfg, temp_cfg, temp_cfg] print('=> the layer configuration for each stage is set to', layers[depth]) self.inplanes = 64 self.addrate = alpha / (sum(layers[depth])*1.0) self.input_featuremap_dim = self.inplanes self.conv1 = nn.Conv2d(3, self.input_featuremap_dim, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(self.input_featuremap_dim) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.featuremap_dim = self.input_featuremap_dim self.layer1 = self.pyramidal_make_layer(blocks[depth], layers[depth][0]) self.layer2 = self.pyramidal_make_layer(blocks[depth], layers[depth][1], stride=2) self.layer3 = self.pyramidal_make_layer(blocks[depth], layers[depth][2], stride=2) self.layer4 = self.pyramidal_make_layer(blocks[depth], layers[depth][3], stride=2) self.final_featuremap_dim = self.input_featuremap_dim self.bn_final= nn.BatchNorm2d(self.final_featuremap_dim) self.relu_final = nn.ReLU(inplace=True) self.avgpool = nn.AvgPool2d(7) self.fc = nn.Linear(self.final_featuremap_dim, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def pyramidal_make_layer(self, block, block_depth, stride=1): downsample = None if stride != 1: # or self.inplanes != int(round(featuremap_dim_1st)) * block.outchannel_ratio: downsample = nn.AvgPool2d((2,2), stride = (2, 2), ceil_mode=True) layers = [] self.featuremap_dim = self.featuremap_dim + self.addrate layers.append(block(self.input_featuremap_dim, int(round(self.featuremap_dim)), stride, downsample)) for i in range(1, block_depth): temp_featuremap_dim = self.featuremap_dim + self.addrate layers.append(block(int(round(self.featuremap_dim)) * block.outchannel_ratio, int(round(temp_featuremap_dim)), 1)) self.featuremap_dim = temp_featuremap_dim self.input_featuremap_dim = int(round(self.featuremap_dim)) * block.outchannel_ratio return nn.Sequential(*layers) def forward(self, x): if self.dataset == 'cifar10' or self.dataset == 'cifar100': x = self.conv1(x) x = self.bn1(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.bn_final(x) x = self.relu_final(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) elif self.dataset == 'imagenet': x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.bn_final(x) x = self.relu_final(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x