"""This module implements an abstract base class (ABC) 'BaseDataset' for datasets. It also includes common transformation functions (e.g., get_transform, __scale_width), which can be later used in subclasses. """ import random import numpy as np import torch.utils.data as data from PIL import Image import torchvision.transforms as transforms from abc import ABC, abstractmethod class BaseDataset(data.Dataset, ABC): """This class is an abstract base class (ABC) for datasets. To create a subclass, you need to implement the following four functions: -- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt). -- <__len__>: return the size of dataset. -- <__getitem__>: get a data point. -- : (optionally) add dataset-specific options and set default options. """ def __init__(self, opt): """Initialize the class; save the options in the class Parameters: opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions """ self.opt = opt self.root = opt.dataroot @staticmethod def modify_commandline_options(parser, is_train): """Add new dataset-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. """ return parser @abstractmethod def __len__(self): """Return the total number of images in the dataset.""" return 0 @abstractmethod def __getitem__(self, index): """Return a data point and its metadata information. Parameters: index - - a random integer for data indexing Returns: a dictionary of data with their names. It ususally contains the data itself and its metadata information. """ pass def set_phase(self, phase): assert phase in ["train", "test", "val"] self.current_phase = phase pass def get_params(opt, size): w, h = size new_h = h new_w = w if opt.preprocess == 'resize_and_crop': new_h = new_w = opt.load_size elif opt.preprocess == 'scale_width_and_crop': new_w = opt.load_size new_h = opt.load_size * h // w x = random.randint(0, np.maximum(0, new_w - opt.crop_size)) y = random.randint(0, np.maximum(0, new_h - opt.crop_size)) return {'crop_pos': (x, y)} def get_transform(opt, params=None, grayscale=False, method=Image.BICUBIC, convert=True): transform_list = [] if grayscale: transform_list.append(transforms.Grayscale(1)) if 'fixsize' in opt.preprocess: transform_list.append(transforms.Resize((opt.crop_size, opt.load_size), method)) if 'resize' in opt.preprocess: osize = [opt.load_size, opt.load_size] if "gta2cityscapes" in opt.dataroot: osize[0] = opt.load_size // 2 transform_list.append(transforms.Resize(osize, method)) elif 'scale_width' in opt.preprocess: transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.load_size, opt.crop_size, method))) elif 'scale_shortside' in opt.preprocess: transform_list.append(transforms.Lambda(lambda img: __scale_shortside(img, opt.load_size, opt.crop_size, method))) elif 'scale_longside' in opt.preprocess: transform_list.append(transforms.Lambda(lambda img: __scale_longside(img, opt.load_size, opt.crop_size, method))) #if 'rotate' in opt.preprocess: # transform_list.append(transforms.RandomRotation(180, resample=Image.BILINEAR)) if 'zoom' in opt.preprocess: if params is None: transform_list.append(transforms.Lambda(lambda img: __random_zoom(img, opt.load_size, opt.crop_size, method))) else: transform_list.append(transforms.Lambda(lambda img: __random_zoom(img, opt.load_size, opt.crop_size, method, factor=params["scale_factor"]))) if 'centercrop'in opt.preprocess: transform_list.append(transforms.Lambda(lambda img: __centercrop(img))) elif 'crop' in opt.preprocess: if params is None or 'crop_pos' not in params: transform_list.append(transforms.RandomCrop(opt.crop_size, padding=opt.preprocess_crop_padding)) else: transform_list.append(transforms.Lambda(lambda img: __crop(img, params['crop_pos'], opt.crop_size))) if 'patch' in opt.preprocess: transform_list.append(transforms.Lambda(lambda img: __patch(img, params['patch_index'], opt.crop_size))) if 'trim' in opt.preprocess: transform_list.append(transforms.Lambda(lambda img: __trim(img, opt.crop_size))) #if opt.preprocess == 'none': transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base=16, method=method))) random_flip = opt.isTrain and (not opt.no_flip) if random_flip: transform_list.append(transforms.RandomHorizontalFlip()) #elif 'flip' in params: # transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip']))) if convert: transform_list += [transforms.ToTensor()] if grayscale: transform_list += [transforms.Normalize((0.5,), (0.5,))] else: transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] return transforms.Compose(transform_list) def __make_power_2(img, base, method=Image.BICUBIC): ow, oh = img.size h = int(round(oh / base) * base) w = int(round(ow / base) * base) if h == oh and w == ow: return img #__print_size_warning(ow, oh, w, h) return img.resize((w, h), method) def __random_zoom(img, target_width, crop_width, method=Image.BICUBIC, factor=None): iw, ih = img.size if factor is None: zoom_level = np.random.uniform(crop_width / iw, 1.0, size=[2]) else: zoom_level = (factor[0], factor[1]) zoomw = max(crop_width, iw * zoom_level[0]) zoomh = max(crop_width, ih * zoom_level[1]) img = img.resize((int(round(zoomw)), int(round(zoomh))), method) return img def __scale_shortside(img, target_width, crop_width, method=Image.BICUBIC): ow, oh = img.size shortside = min(ow, oh) scale = target_width / shortside return img.resize((round(ow * scale), round(oh * scale)), method) def __centercrop(img): ow, oh = img.size s = min(ow, oh) return img.crop(((ow - s) // 2, (oh - s) // 2, (ow + s) // 2, (oh + s) // 2)) def __scale_longside(img, target_width, crop_width, method=Image.BICUBIC): ow, oh = img.size longside = max(ow, oh) scale = target_width / longside return img.resize((round(ow * scale), round(oh * scale)), method) def __trim(img, trim_width): ow, oh = img.size if ow > trim_width: xstart = np.random.randint(ow - trim_width) xend = xstart + trim_width else: xstart = 0 xend = ow if oh > trim_width: ystart = np.random.randint(oh - trim_width) yend = ystart + trim_width else: ystart = 0 yend = oh return img.crop((xstart, ystart, xend, yend)) def __scale_width(img, target_width, crop_width, method=Image.BICUBIC): ow, oh = img.size if ow == target_width and oh >= crop_width: return img w = target_width #h = int(max(target_width * oh / ow, crop_width)) h = int(target_width * oh / ow) return img.resize((w, h), method) def __crop(img, pos, size): ow, oh = img.size x1, y1 = pos tw = th = size if (ow > tw or oh > th): return img.crop((x1, y1, x1 + tw, y1 + th)) return img def __patch(img, index, size): ow, oh = img.size nw, nh = ow // size, oh // size roomx = ow - nw * size roomy = oh - nh * size startx = np.random.randint(int(roomx) + 1) starty = np.random.randint(int(roomy) + 1) index = index % (nw * nh) ix = index // nh iy = index % nh gridx = startx + ix * size gridy = starty + iy * size return img.crop((gridx, gridy, gridx + size, gridy + size)) def __flip(img, flip): if flip: return img.transpose(Image.FLIP_LEFT_RIGHT) return img def __print_size_warning(ow, oh, w, h): """Print warning information about image size(only print once)""" if not hasattr(__print_size_warning, 'has_printed'): print("The image size needs to be a multiple of 4. " "The loaded image size was (%d, %d), so it was adjusted to " "(%d, %d). This adjustment will be done to all images " "whose sizes are not multiples of 4" % (ow, oh, w, h)) __print_size_warning.has_printed = True