import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import copy class Config(object): """配置参数""" def __init__(self, dataset, embedding): self.model_name = 'Transformer' self.train_path = dataset + '/data/train.txt' # 训练集 self.dev_path = dataset + '/data/dev.txt' # 验证集 self.test_path = dataset + '/data/test.txt' # 测试集 self.class_list = [x.strip() for x in open( dataset + '/data/class.txt', encoding='utf-8').readlines()] # 类别名单 self.vocab_path = dataset + '/data/vocab.pkl' # 词表 self.save_path = dataset + '/saved_dict/' + self.model_name + '.ckpt' # 模型训练结果 self.log_path = dataset + '/log/' + self.model_name self.embedding_pretrained = torch.tensor( np.load(dataset + '/data/' + embedding)["embeddings"].astype('float32'))\ if embedding != 'random' else None # 预训练词向量 self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备 self.dropout = 0.5 # 随机失活 self.require_improvement = 2000 # 若超过1000batch效果还没提升,则提前结束训练 self.num_classes = len(self.class_list) # 类别数 self.n_vocab = 0 # 词表大小,在运行时赋值 self.num_epochs = 20 # epoch数 self.batch_size = 128 # mini-batch大小 self.pad_size = 32 # 每句话处理成的长度(短填长切) self.learning_rate = 5e-4 # 学习率 self.embed = self.embedding_pretrained.size(1)\ if self.embedding_pretrained is not None else 300 # 字向量维度 self.dim_model = 300 self.hidden = 1024 self.last_hidden = 512 self.num_head = 5 self.num_encoder = 2 '''Attention Is All You Need''' class Model(nn.Module): def __init__(self, config): super(Model, self).__init__() if config.embedding_pretrained is not None: self.embedding = nn.Embedding.from_pretrained(config.embedding_pretrained, freeze=False) else: self.embedding = nn.Embedding(config.n_vocab, config.embed, padding_idx=config.n_vocab - 1) self.postion_embedding = Positional_Encoding(config.embed, config.pad_size, config.dropout, config.device) self.encoder = Encoder(config.dim_model, config.num_head, config.hidden, config.dropout) self.encoders = nn.ModuleList([ copy.deepcopy(self.encoder) # Encoder(config.dim_model, config.num_head, config.hidden, config.dropout) for _ in range(config.num_encoder)]) self.fc1 = nn.Linear(config.pad_size * config.dim_model, config.num_classes) # self.fc2 = nn.Linear(config.last_hidden, config.num_classes) # self.fc1 = nn.Linear(config.dim_model, config.num_classes) def forward(self, x): out = self.embedding(x[0]) out = self.postion_embedding(out) for encoder in self.encoders: out = encoder(out) out = out.view(out.size(0), -1) # out = torch.mean(out, 1) out = self.fc1(out) return out class Encoder(nn.Module): def __init__(self, dim_model, num_head, hidden, dropout): super(Encoder, self).__init__() self.attention = Multi_Head_Attention(dim_model, num_head, dropout) self.feed_forward = Position_wise_Feed_Forward(dim_model, hidden, dropout) def forward(self, x): out = self.attention(x) out = self.feed_forward(out) return out class Positional_Encoding(nn.Module): def __init__(self, embed, pad_size, dropout, device): super(Positional_Encoding, self).__init__() self.device = device self.pe = torch.tensor([[pos / (10000.0 ** (i // 2 * 2.0 / embed)) for i in range(embed)] for pos in range(pad_size)]) self.pe[:, 0::2] = np.sin(self.pe[:, 0::2]) self.pe[:, 1::2] = np.cos(self.pe[:, 1::2]) self.dropout = nn.Dropout(dropout) def forward(self, x): out = x + nn.Parameter(self.pe, requires_grad=False).to(self.device) out = self.dropout(out) return out class Scaled_Dot_Product_Attention(nn.Module): '''Scaled Dot-Product Attention ''' def __init__(self): super(Scaled_Dot_Product_Attention, self).__init__() def forward(self, Q, K, V, scale=None): ''' Args: Q: [batch_size, len_Q, dim_Q] K: [batch_size, len_K, dim_K] V: [batch_size, len_V, dim_V] scale: 缩放因子 论文为根号dim_K Return: self-attention后的张量,以及attention张量 ''' attention = torch.matmul(Q, K.permute(0, 2, 1)) if scale: attention = attention * scale # if mask: # TODO change this # attention = attention.masked_fill_(mask == 0, -1e9) attention = F.softmax(attention, dim=-1) context = torch.matmul(attention, V) return context class Multi_Head_Attention(nn.Module): def __init__(self, dim_model, num_head, dropout=0.0): super(Multi_Head_Attention, self).__init__() self.num_head = num_head assert dim_model % num_head == 0 self.dim_head = dim_model // self.num_head self.fc_Q = nn.Linear(dim_model, num_head * self.dim_head) self.fc_K = nn.Linear(dim_model, num_head * self.dim_head) self.fc_V = nn.Linear(dim_model, num_head * self.dim_head) self.attention = Scaled_Dot_Product_Attention() self.fc = nn.Linear(num_head * self.dim_head, dim_model) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(dim_model) def forward(self, x): batch_size = x.size(0) Q = self.fc_Q(x) K = self.fc_K(x) V = self.fc_V(x) Q = Q.view(batch_size * self.num_head, -1, self.dim_head) K = K.view(batch_size * self.num_head, -1, self.dim_head) V = V.view(batch_size * self.num_head, -1, self.dim_head) # if mask: # TODO # mask = mask.repeat(self.num_head, 1, 1) # TODO change this scale = K.size(-1) ** -0.5 # 缩放因子 context = self.attention(Q, K, V, scale) context = context.view(batch_size, -1, self.dim_head * self.num_head) out = self.fc(context) out = self.dropout(out) out = out + x # 残差连接 out = self.layer_norm(out) return out class Position_wise_Feed_Forward(nn.Module): def __init__(self, dim_model, hidden, dropout=0.0): super(Position_wise_Feed_Forward, self).__init__() self.fc1 = nn.Linear(dim_model, hidden) self.fc2 = nn.Linear(hidden, dim_model) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(dim_model) def forward(self, x): out = self.fc1(x) out = F.relu(out) out = self.fc2(out) out = self.dropout(out) out = out + x # 残差连接 out = self.layer_norm(out) return out