import argparse import os from importlib import import_module import gradio as gr from tqdm import tqdm import models.TextCNN import torch import pickle as pkl from utils import build_dataset classes = ['金融类', '房地产类', '股票类', '教育类', '科技类', '社会类', '政治类', '体育类', '游戏类', '娱乐类'] MAX_VOCAB_SIZE = 10000 # 词表长度限制 UNK, PAD = '', '' # 未知字,padding符号 def build_vocab(file_path, tokenizer, max_size, min_freq): vocab_dic = {} with open(file_path, 'r', encoding='UTF-8') as f: for line in tqdm(f): lin = line.strip() if not lin: continue content = lin.split('\t')[0] for word in tokenizer(content): vocab_dic[word] = vocab_dic.get(word, 0) + 1 vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[ :max_size] vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)} vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1}) return vocab_dic def greet(text): parser = argparse.ArgumentParser(description='Chinese Text Classification') parser.add_argument('--word', default=False, type=bool, help='True for word, False for char') args = parser.parse_args() model_name = 'TextCNN' dataset = 'THUCNews' # 数据集 embedding = 'embedding_SougouNews.npz' x = import_module('models.' + model_name) config = x.Config(dataset, embedding) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = models.TextCNN.Model(config) # vocab, train_data, dev_data, test_data = build_dataset(config, args.word) model.load_state_dict(torch.load('THUCNews/saved_dict/TextCNN.ckpt', map_location=torch.device('cpu'))) model.to(device) model.eval() tokenizer = lambda x: [y for y in x] # char-level if os.path.exists(config.vocab_path): vocab = pkl.load(open(config.vocab_path, 'rb')) else: vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1) pkl.dump(vocab, open(config.vocab_path, 'wb')) # print(f"Vocab size: {len(vocab)}") # content='时评:“国学小天才”录取缘何少佳话' content = text words_line = [] token = tokenizer(content) seq_len = len(token) pad_size = 32 contents = [] if pad_size: if len(token) < pad_size: token.extend([PAD] * (pad_size - len(token))) else: token = token[:pad_size] seq_len = pad_size # word to id for word in token: words_line.append(vocab.get(word, vocab.get(UNK))) contents.append((words_line, seq_len)) # print(words_line) # input = torch.LongTensor(words_line).unsqueeze(1).to(device) # convert words_line to LongTensor and add batch dimension x = torch.LongTensor([_[0] for _ in contents]).to(device) # pad前的长度(超过pad_size的设为pad_size) seq_len = torch.LongTensor([_[1] for _ in contents]).to(device) input = (x, seq_len) # print(input) with torch.no_grad(): output = model(input) predic = torch.max(output.data, 1)[1].cpu().numpy() # print(predic) # print('类别为:{}'.format(classes[predic[0]])) return classes[predic[0]] examples = [ ["苹果发布iPhone18"], ["小明高考考了700分"], ["英雄联盟世界赛即将开始"] ] demo = gr.Interface(fn=greet, inputs="text", outputs="text", title="text-classification app", layout="vertical", description="This is a demo for text classification.",examples=examples) demo.launch() #