import argparse import os from importlib import import_module import gradio as gr from tqdm import tqdm import models.TextCNN import torch import pickle as pkl from utils import build_dataset classes=['finance','realty','stocks','education','science','society','politics','sports','game','entertainment'] MAX_VOCAB_SIZE = 10000 # 词表长度限制 UNK, PAD = '', '' # 未知字,padding符号 def build_vocab(file_path, tokenizer, max_size, min_freq): vocab_dic = {} with open(file_path, 'r', encoding='UTF-8') as f: for line in tqdm(f): lin = line.strip() if not lin: continue content = lin.split('\t')[0] for word in tokenizer(content): vocab_dic[word] = vocab_dic.get(word, 0) + 1 vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[:max_size] vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)} vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1}) return vocab_dic parser = argparse.ArgumentParser(description='Chinese Text Classification') parser.add_argument('--word', default=False, type=bool, help='True for word, False for char') args = parser.parse_args() model_name='TextCNN' dataset = 'THUCNews' # 数据集 embedding = 'embedding_SougouNews.npz' x = import_module('models.' + model_name) config = x.Config(dataset, embedding) device='cuda:0' model=models.TextCNN.Model(config) # vocab, train_data, dev_data, test_data = build_dataset(config, args.word) model.load_state_dict(torch.load('THUCNews/saved_dict/TextCNN.ckpt')) model.to(device) model.eval() tokenizer = lambda x: [y for y in x] # char-level if os.path.exists(config.vocab_path): vocab = pkl.load(open(config.vocab_path, 'rb')) else: vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1) pkl.dump(vocab, open(config.vocab_path, 'wb')) print(f"Vocab size: {len(vocab)}") # content='时评:“国学小天才”录取缘何少佳话' content=input('输入语句:') words_line = [] token = tokenizer(content) seq_len = len(token) pad_size=32 contents=[] if pad_size: if len(token) < pad_size: token.extend([PAD] * (pad_size - len(token))) else: token = token[:pad_size] seq_len = pad_size # word to id for word in token: words_line.append(vocab.get(word, vocab.get(UNK))) contents.append((words_line, seq_len)) print(words_line) # input = torch.LongTensor(words_line).unsqueeze(1).to(device) # convert words_line to LongTensor and add batch dimension x = torch.LongTensor([_[0] for _ in contents]).to(device) # pad前的长度(超过pad_size的设为pad_size) seq_len = torch.LongTensor([_[1] for _ in contents]).to(device) input=(x,seq_len) print(input) with torch.no_grad(): output = model(input) predic = torch.max(output.data, 1)[1].cpu().numpy() print(predic) print('类别为:{}'.format(classes[predic[0]])) # with torch.no_grad(): # output=model(input) # print(output) # # start_time = time.time() # test_iter = build_iterator(test_data, config) # with torch.no_grad(): # predict_all = np.array([], dtype=int) # labels_all = np.array([], dtype=int) # for texts, labels in test_iter: # # texts=texts.to(device) # print(texts) # outputs = model(texts) # loss = F.cross_entropy(outputs, labels) # labels = labels.data.cpu().numpy() # predic = torch.max(outputs.data, 1)[1].cpu().numpy() # labels_all = np.append(labels_all, labels) # predict_all = np.append(predict_all, predic) # break # print(labels_all) # print(predict_all) # #