import streamlit as st import pandas as pd import numpy as np import plotly.express as px from sklearn.ensemble import IsolationForest from io import BytesIO from reportlab.lib.pagesizes import letter from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image, PageBreak from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle from reportlab.lib.units import inch from reportlab.lib import colors import pdfplumber import base64 import random import plotly.io as pio # Fix for Kaleido pio.kaleido.scope.mathjax = None # App Configuration st.set_page_config( page_title="WiFi Guardian 🛡️", page_icon="📶", layout="wide" ) # Custom CSS for a polished interface st.markdown(""" """, unsafe_allow_html=True) # Motivational Quotes QUOTES = [ "🛡️ Cybersecurity is not a product, but a process!", "🔒 Better safe than hacked!", "📶 A secure network is a happy network!", "🤖 AI guards while you sleep!", "🚨 Detect before you regret!", "💻 Security is always worth the investment!", "🔍 Stay vigilant, stay secure!" ] def show_quote(): st.markdown(f"

{random.choice(QUOTES)}

", unsafe_allow_html=True) # Main App Function def main(): # Initialize session state variables if 'current_step' not in st.session_state: st.session_state.current_step = 1 if 'file_uploaded' not in st.session_state: st.session_state.file_uploaded = False if 'df' not in st.session_state: st.session_state.df = None # Sidebar Navigation with st.sidebar: st.title("🔍 Navigation") st.markdown("---") if st.button("📤 1. Upload File", help="Upload your network logs"): st.session_state.current_step = 1 if st.button("📊 2. Data Visualization", disabled=not st.session_state.file_uploaded): st.session_state.current_step = 2 if st.button("📈 3. Statistics Analysis", disabled=not st.session_state.file_uploaded): st.session_state.current_step = 3 if st.button("📥 4. Download Report", disabled=not st.session_state.file_uploaded): st.session_state.current_step = 4 # Main Content Area if st.session_state.current_step == 1: upload_file_section() elif st.session_state.current_step == 2: visualization_section() elif st.session_state.current_step == 3: statistics_section() elif st.session_state.current_step == 4: download_section() def upload_file_section(): st.title("📤 Upload Network Logs") st.markdown("---") if not st.session_state.file_uploaded: show_quote() st.markdown(""" ### Welcome to WiFi Guardian! 🤖 **Protect your network with AI-powered anomaly detection** 1. Upload network logs 📤 2. Visualize patterns 📊 3. Generate reports 📄 """) uploaded_file = st.file_uploader( "Choose network logs (CSV/TXT/PDF)", type=["csv", "txt", "pdf"], label_visibility="collapsed" ) if uploaded_file: try: process_file(uploaded_file) st.session_state.file_uploaded = True st.success("✅ File processed successfully!") # Show file summary st.subheader("📋 Upload Summary") col1, col2, col3 = st.columns(3) with col1: st.metric("Total Records", len(st.session_state.df)) with col2: anomalies = sum(st.session_state.df['anomaly'] == -1) st.metric("Anomalies Detected", f"{anomalies} ({anomalies/len(st.session_state.df)*100:.1f}%)") with col3: st.metric("Max Traffic", f"{st.session_state.df['traffic'].max():.2f} Mbps") except Exception as e: st.error(f"Error processing file: {str(e)}") def visualization_section(): st.title("📊 Data Visualization") st.markdown("---") # 2D Visualization st.subheader("2D Traffic Analysis 🌐") # Use 'timestamp' if available; if not, generate a dummy one df = st.session_state.df.copy() if 'timestamp' not in df.columns: df['timestamp'] = pd.date_range(start="2021-01-01", periods=len(df), freq="T") fig2d = px.scatter( df, x='timestamp', y='traffic', color='anomaly', color_discrete_map={-1: 'orange', 1: 'blue'}, title="2D Traffic Analysis" ) st.plotly_chart(fig2d, use_container_width=True) # 3D Visualization st.subheader("3D Network Health 🌍") fig3d = px.scatter_3d( df, x='latency', y='packet_loss', z='traffic', color='anomaly', color_discrete_map={-1: 'orange', 1: 'blue'}, title="3D Network Analysis" ) st.plotly_chart(fig3d, use_container_width=True) def statistics_section(): st.title("📈 Statistical Analysis") st.markdown("---") st.subheader("Data Summary 📝") st.dataframe(st.session_state.df.describe(), use_container_width=True) st.subheader("Anomaly Distribution 📊") anomaly_counts = st.session_state.df['anomaly'].value_counts() fig = px.pie( names=['Normal', 'Anomaly'], values=[anomaly_counts.get(1, 0), anomaly_counts.get(-1, 0)], hole=0.4, color_discrete_sequence=['blue', 'orange'], title="Anomaly Distribution" ) st.plotly_chart(fig, use_container_width=True) def download_section(): st.title("📥 Download Report") st.markdown("---") if st.button("🖨️ Generate Full Report"): with st.spinner("Generating PDF report..."): generate_pdf_report() st.success("Report generated successfully!") if 'pdf_report' in st.session_state: st.markdown("---") b64 = base64.b64encode(st.session_state.pdf_report).decode() href = f'📥 Download Full Report' st.markdown(href, unsafe_allow_html=True) def process_file(uploaded_file): try: # Process CSV files if uploaded_file.name.endswith('.csv'): df = pd.read_csv(uploaded_file) # Process TXT files elif uploaded_file.name.endswith('.txt'): lines = [line.decode().strip().split(',') for line in uploaded_file.readlines()] df = pd.DataFrame(lines[1:], columns=lines[0]) # Process PDF files using pdfplumber elif uploaded_file.name.endswith('.pdf'): with pdfplumber.open(uploaded_file) as pdf: text = '\n'.join([page.extract_text() for page in pdf.pages]) lines = [line.split(',') for line in text.split('\n') if line] df = pd.DataFrame(lines[1:], columns=lines[0]) else: raise ValueError("Unsupported file type.") # Ensure required numeric columns exist and convert them numeric_cols = ['traffic', 'latency', 'packet_loss'] for col in numeric_cols: if col not in df.columns: raise ValueError(f"Column '{col}' not found in data.") df[col] = pd.to_numeric(df[col], errors='coerce') # Run anomaly detection using IsolationForest with 40% contamination clf = IsolationForest(contamination=0.4, random_state=42) df['anomaly'] = clf.fit_predict(df[numeric_cols]) st.session_state.df = df except Exception as e: st.error(f"Error processing file: {str(e)}") raise def generate_pdf_report(): try: buffer = BytesIO() doc = SimpleDocTemplate(buffer, pagesize=letter) styles = getSampleStyleSheet() elements = [] # Custom Title Style title_style = ParagraphStyle( name='Title', parent=styles['Heading1'], fontSize=18, textColor=colors.darkblue, spaceAfter=14 ) # Add Title elements.append(Paragraph("WiFi Network Anomaly Detection", title_style)) elements.append(Spacer(1, 12)) # Add Summary Section elements.append(Paragraph("Detection Summary:", styles['Heading2'])) summary_text = f""" • Total Data Points: {len(st.session_state.df)}
• Anomalies Detected: {sum(st.session_state.df['anomaly'] == -1)}
• Maximum Traffic: {st.session_state.df['traffic'].max():.2f} Mbps
• Average Latency: {st.session_state.df['latency'].mean():.2f} ms
• Peak Packet Loss: {st.session_state.df['packet_loss'].max():.2f}%
""" elements.append(Paragraph(summary_text, styles['BodyText'])) elements.append(PageBreak()) # Generate and embed plots in memory using BytesIO # 2D Plot df = st.session_state.df.copy() if 'timestamp' not in df.columns: df['timestamp'] = pd.date_range(start="2021-01-01", periods=len(df), freq="T") fig2d = px.scatter(df, x='timestamp', y='traffic', color='anomaly', title="2D Traffic Analysis", color_discrete_map={-1: 'orange', 1: 'blue'}) img_bytes_2d = fig2d.to_image(format="png", engine="kaleido") img2d_io = BytesIO(img_bytes_2d) # 3D Plot fig3d = px.scatter_3d(df, x='latency', y='packet_loss', z='traffic', color='anomaly', title="3D Network Analysis", color_discrete_map={-1: 'orange', 1: 'blue'}) img_bytes_3d = fig3d.to_image(format="png", engine="kaleido") img3d_io = BytesIO(img_bytes_3d) # Add 2D Plot elements.append(Paragraph("2D Traffic Analysis", styles['Heading2'])) elements.append(Image(img2d_io, width=6*inch, height=4*inch)) elements.append(Spacer(1, 12)) # Add 3D Plot elements.append(Paragraph("3D Network Analysis", styles['Heading2'])) elements.append(Image(img3d_io, width=6*inch, height=4*inch)) elements.append(PageBreak()) # Add Statistics Section elements.append(Paragraph("Statistical Report", styles['Heading1'])) stats = st.session_state.df.describe() for col in ['traffic', 'latency', 'packet_loss']: elements.append(Paragraph(f"{col.capitalize()} Statistics:", styles['Heading3'])) stats_text = f""" • Mean: {stats[col]['mean']:.2f}
• Std Dev: {stats[col]['std']:.2f}
• Min: {stats[col]['min']:.2f}
• 25%: {stats[col]['25%']:.2f}
• 50%: {stats[col]['50%']:.2f}
• 75%: {stats[col]['75%']:.2f}
• Max: {stats[col]['max']:.2f}
""" elements.append(Paragraph(stats_text, styles['BodyText'])) elements.append(Spacer(1, 12)) doc.build(elements) st.session_state.pdf_report = buffer.getvalue() except Exception as e: st.error(f"Error generating report: {str(e)}") if __name__ == "__main__": main()