sun-tana commited on
Commit
f81c7d5
β€’
1 Parent(s): 0104595
Files changed (1) hide show
  1. app.py +3 -5
app.py CHANGED
@@ -19,8 +19,6 @@ transformer_model = TFAutoModel.from_pretrained("xlm-roberta-base") #philschmid/
19
  max_seq_length = 32
20
 
21
  def create_model():
22
- # input_layer = Input(shape=(input_ids.shape[1],))
23
- # embedding_layer = Embedding(max_seq_length+ 1, 200, input_length=max_seq_length)(input_layer)
24
 
25
  inputs = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32)
26
  embedding_layer = transformer_model(inputs)[0]
@@ -66,9 +64,9 @@ def create_model():
66
  output_layer3 = Dense(1, activation='sigmoid', name='output3')(x3)
67
  output_layer4 = Dense(1, activation='sigmoid', name='output4')(x4)
68
  output_layer5 = Dense(1, activation='sigmoid', name='output5')(x5)
69
- output_layer6 = Dense(num_class_label_6, activation='softmax', name='output6')(x6)
70
- output_layer7 = Dense(num_class_label_7, activation='softmax', name='output7')(x7)
71
- output_layer8 = Dense(num_class_label_8, activation='softmax', name='output8')(x8)
72
 
73
  model = Model(inputs=inputs , outputs=[output_layer1, output_layer2, output_layer3,output_layer4,output_layer5,output_layer6,output_layer7,output_layer8])
74
  model.load_weights("t1_m1.h5")
 
19
  max_seq_length = 32
20
 
21
  def create_model():
 
 
22
 
23
  inputs = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32)
24
  embedding_layer = transformer_model(inputs)[0]
 
64
  output_layer3 = Dense(1, activation='sigmoid', name='output3')(x3)
65
  output_layer4 = Dense(1, activation='sigmoid', name='output4')(x4)
66
  output_layer5 = Dense(1, activation='sigmoid', name='output5')(x5)
67
+ output_layer6 = Dense(119, activation='softmax', name='output6')(x6)
68
+ output_layer7 = Dense(25, activation='softmax', name='output7')(x7)
69
+ output_layer8 = Dense(61, activation='softmax', name='output8')(x8)
70
 
71
  model = Model(inputs=inputs , outputs=[output_layer1, output_layer2, output_layer3,output_layer4,output_layer5,output_layer6,output_layer7,output_layer8])
72
  model.load_weights("t1_m1.h5")