# app.py 이름을 가진 파일이 꼭 필요하다 import gradio as gr from transformers import PreTrainedTokenizerFast, BartForConditionalGeneration model_name = "ainize/kobart-news" tokenizer = PreTrainedTokenizerFast.from_pretrained(model_name) model = BartForConditionalGeneration.from_pretrained(model_name) def summ(txt): input_ids = tokenizer.encode(txt, return_tensors="pt") summary_text_ids = model.generate( input_ids=input_ids, bos_token_id=model.config.bos_token_id, # BOS는 Beginning Of Sentence eos_token_id=model.config.eos_token_id, # EOS는 End Of Sentence length_penalty=2.0, # 요약을 얼마나 짧게 할지 max_length=142, min_length=56, num_beams=4) # beam search return tokenizer.decode(summary_text_ids[0], skip_special_tokens=True) interface = gr.Interface(summ, [gr.Textbox(label="original text")], [gr.Textbox(label="summary")]) interface.launch()