Delete [skooldio]_thai_handwritten_recognition_app_by_gradio (2).py
Browse files
[skooldio]_thai_handwritten_recognition_app_by_gradio (2).py
DELETED
|
@@ -1,102 +0,0 @@
|
|
| 1 |
-
# -*- coding: utf-8 -*-
|
| 2 |
-
"""[Skooldio] Thai Handwritten Recognition App by Gradio
|
| 3 |
-
|
| 4 |
-
Automatically generated by Colab.
|
| 5 |
-
|
| 6 |
-
Original file is located at
|
| 7 |
-
https://colab.research.google.com/drive/1Feza00drEEejwPVzgdTmz60KArcms_w_
|
| 8 |
-
"""
|
| 9 |
-
|
| 10 |
-
!pip install gradio==3.35.0
|
| 11 |
-
!pip install torchvision
|
| 12 |
-
|
| 13 |
-
!wget https://github.com/biodatlab/deep-learning-skooldio/raw/master/saved_model/thai_digit_net.pth
|
| 14 |
-
|
| 15 |
-
import numpy as np
|
| 16 |
-
import torch
|
| 17 |
-
from pathlib import Path
|
| 18 |
-
import torch.nn as nn
|
| 19 |
-
import torch.nn.functional as F
|
| 20 |
-
from PIL import Image
|
| 21 |
-
from torchvision import transforms
|
| 22 |
-
import gradio as gr
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
transform = transforms.Compose([
|
| 26 |
-
transforms.Resize((28, 28)),
|
| 27 |
-
transforms.Grayscale(),
|
| 28 |
-
transforms.ToTensor()
|
| 29 |
-
])
|
| 30 |
-
labels = ["๐ (ศูนย์)", "๑ (หนึ่ง)", "๒ (สอง)", "๓ (สาม)", "๔ (สี่)", "๕ (ห้า)", "๖ (หก)", "๗ (เจ็ด)", "๘ (แปด)", "๙ (เก้า)"]
|
| 31 |
-
LABELS = {i:k for i, k in enumerate(labels)} # dictionary of index and label
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
# Load model using DropoutThaiDigit instead
|
| 35 |
-
class DropoutThaiDigit(nn.Module):
|
| 36 |
-
def __init__(self):
|
| 37 |
-
super(DropoutThaiDigit, self).__init__()
|
| 38 |
-
self.fc1 = nn.Linear(28 * 28, 392)
|
| 39 |
-
self.fc2 = nn.Linear(392, 196)
|
| 40 |
-
self.fc3 = nn.Linear(196, 98)
|
| 41 |
-
self.fc4 = nn.Linear(98, 10)
|
| 42 |
-
self.dropout = nn.Dropout(0.1)
|
| 43 |
-
|
| 44 |
-
def forward(self, x):
|
| 45 |
-
x = x.view(-1, 28 * 28)
|
| 46 |
-
x = self.fc1(x)
|
| 47 |
-
x = F.relu(x)
|
| 48 |
-
x = self.dropout(x)
|
| 49 |
-
x = self.fc2(x)
|
| 50 |
-
x = F.relu(x)
|
| 51 |
-
x = self.dropout(x)
|
| 52 |
-
x = self.fc3(x)
|
| 53 |
-
x = F.relu(x)
|
| 54 |
-
x = self.dropout(x)
|
| 55 |
-
x = self.fc4(x)
|
| 56 |
-
return x
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
model = DropoutThaiDigit()
|
| 60 |
-
model.load_state_dict(torch.load("thai_digit_net.pth"))
|
| 61 |
-
model.eval()
|
| 62 |
-
|
| 63 |
-
def predict(img):
|
| 64 |
-
if img.get("composite") is not None:
|
| 65 |
-
if img["composite"].sum() == 0:
|
| 66 |
-
return {"No input sketch": 0.0}
|
| 67 |
-
|
| 68 |
-
img_data = img['composite']
|
| 69 |
-
img_gray = Image.fromarray(img_data).convert('L').resize((28, 28))
|
| 70 |
-
img_tensor = transforms.ToTensor()(img_gray).unsqueeze(0)
|
| 71 |
-
|
| 72 |
-
with torch.no_grad():
|
| 73 |
-
probs = model(img_tensor).softmax(dim=1).squeeze()
|
| 74 |
-
|
| 75 |
-
probs, indices = torch.topk(probs, 5)
|
| 76 |
-
return {LABELS[i]: float(p) for i, p in zip(indices.tolist(), probs.tolist())}
|
| 77 |
-
|
| 78 |
-
demo = gr.Interface(
|
| 79 |
-
fn=predict,
|
| 80 |
-
inputs=gr.Sketchpad(
|
| 81 |
-
label="Draw Here",
|
| 82 |
-
image_mode="L",
|
| 83 |
-
width=400,
|
| 84 |
-
height=350
|
| 85 |
-
),
|
| 86 |
-
outputs=gr.Label(label="Guess"),
|
| 87 |
-
title="Thai Digit Handwritten Classification",
|
| 88 |
-
description="วาดเลขไทยตั้งแต่ ๐ ถึง ๙",
|
| 89 |
-
live=True
|
| 90 |
-
)
|
| 91 |
-
|
| 92 |
-
if __name__ == "__main__":
|
| 93 |
-
demo.launch()
|
| 94 |
-
|
| 95 |
-
gr.Interface(
|
| 96 |
-
fn=predict,
|
| 97 |
-
inputs=gr.Sketchpad(label="Draw Here", brush_radius=5, type="pil", shape=(120, 120)),
|
| 98 |
-
outputs=gr.Label(label="Guess"),
|
| 99 |
-
title="Thai Digit Handwritten Classification",
|
| 100 |
-
live=True
|
| 101 |
-
).launch(enable_queue=True)
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|