import torch from torch.autograd import Variable from torch import nn from torch.nn import functional as F class BahdanauAttention(nn.Module): def __init__(self, dim): super(BahdanauAttention, self).__init__() self.query_layer = nn.Linear(dim, dim, bias=False) self.tanh = nn.Tanh() self.v = nn.Linear(dim, 1, bias=False) def forward(self, query, processed_memory): """ Args: query: (batch, 1, dim) or (batch, dim) processed_memory: (batch, max_time, dim) """ if query.dim() == 2: # insert time-axis for broadcasting query = query.unsqueeze(1) # (batch, 1, dim) processed_query = self.query_layer(query) # (batch, max_time, 1) alignment = self.v(self.tanh(processed_query + processed_memory)) # (batch, max_time) return alignment.squeeze(-1) def get_mask_from_lengths(memory, memory_lengths): """Get mask tensor from list of length Args: memory: (batch, max_time, dim) memory_lengths: array like """ mask = memory.data.new(memory.size(0), memory.size(1)).byte().zero_() for idx, l in enumerate(memory_lengths): mask[idx][:l] = 1 return ~mask class AttentionWrapper(nn.Module): def __init__(self, rnn_cell, attention_mechanism, score_mask_value=-float("inf")): super(AttentionWrapper, self).__init__() self.rnn_cell = rnn_cell self.attention_mechanism = attention_mechanism self.score_mask_value = score_mask_value def forward(self, query, attention, cell_state, memory, processed_memory=None, mask=None, memory_lengths=None): if processed_memory is None: processed_memory = memory if memory_lengths is not None and mask is None: mask = get_mask_from_lengths(memory, memory_lengths) # Concat input query and previous attention context cell_input = torch.cat((query, attention), -1) # Feed it to RNN cell_output = self.rnn_cell(cell_input, cell_state) # Alignment # (batch, max_time) alignment = self.attention_mechanism(cell_output, processed_memory) if mask is not None: mask = mask.view(query.size(0), -1) alignment.data.masked_fill_(mask, self.score_mask_value) # Normalize attention weight alignment = F.softmax(alignment) # Attention context vector # (batch, 1, dim) attention = torch.bmm(alignment.unsqueeze(1), memory) # (batch, dim) attention = attention.squeeze(1) return cell_output, attention, alignment