import math import warnings import torch from dist import cached_grid from utils import log as log_utils LOGGER = log_utils.getLogger(__name__) def mask_selector(masks_softmaxed, top=2, size_norm=False): """Select centre most masks and sumthem """ b, k, *other_dims, h, w = masks_softmaxed.shape masks_softmaxed = masks_softmaxed.view(b, k, 1, h, w) g = cached_grid(h, w, device=masks_softmaxed.device, dtype=masks_softmaxed.dtype) x = g[0, 0] / (w - 1) - .5 y = g[0, 1] / (h - 1) - .5 v = (x ** 2 + y ** 2) * 2 assert len(v.shape) == 2 v = v.view(*[1] * (len(masks_softmaxed) - 2), h, w) scores = (masks_softmaxed * (1 - v)).sum([-1, -2]).view(b, k) scores = scores / (masks_softmaxed.flatten(-3).sum(-1) + 1e-6) LOGGER.debug_once(f"Selector -- masks in {masks_softmaxed.shape}; scores {scores.shape}") best_idxs = scores.topk(top, dim=-1).indices[..., None, None, None].expand(-1, -1, -1, h, w) wrst_idxs = (-scores).topk(k - top, dim=-1).indices[..., None, None, None].expand(-1, -1, -1, h, w) LOGGER.debug_once(f"Selector -- inds {best_idxs.shape} {wrst_idxs.shape}") masks_out = torch.empty(b, 2, 1, h, w, device=masks_softmaxed.device, dtype=masks_softmaxed.dtype) centre_most_masks = torch.gather(masks_softmaxed, 1, best_idxs).sum(1, keepdim=True) other_masks = torch.gather(masks_softmaxed, 1, wrst_idxs).sum(1, keepdim=True) LOGGER.debug_once(f"Selector -- best {centre_most_masks.shape} others {other_masks.shape}") masks_out[:, 1:] = centre_most_masks masks_out[:, :1] = other_masks return masks_out.view(b, 2, *other_dims, h, w) def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): # type: (Tensor, float, float, float, float) -> Tensor return _no_grad_trunc_normal_(tensor, mean, std, a, b)