import streamlit as st from knowledge_gpt.components.sidebar import sidebar from knowledge_gpt.ui import ( wrap_doc_in_html, is_query_valid, is_file_valid, is_open_ai_key_valid, display_file_read_error, ) from knowledge_gpt.core.caching import bootstrap_caching from knowledge_gpt.core.parsing import read_file from knowledge_gpt.core.chunking import chunk_file from knowledge_gpt.core.embedding import embed_files from knowledge_gpt.core.qa import query_folder from knowledge_gpt.core.utils import get_llm EMBEDDING = "openai" VECTOR_STORE = "faiss" MODEL_LIST = ["gpt-3.5-turbo", "gpt-4"] # Uncomment to enable debug mode # MODEL_LIST.insert(0, "debug") st.set_page_config(page_title="ReportIO", page_icon="☘️", layout="wide") st.header("☘️ReportIO") # Enable caching for expensive functions bootstrap_caching() sidebar() openai_api_key = st.session_state.get("OPENAI_API_KEY") if not openai_api_key: st.warning( "Enter your OpenAI API key in the sidebar. You can get a key at" " https://platform.openai.com/account/api-keys." ) uploaded_file = st.file_uploader( "Upload a pdf, docx, or txt file", type=["pdf", "docx", "txt"], help="Scanned documents are not supported yet!", ) # model: str = st.selectbox("Model", options=MODEL_LIST) # type: ignore model = MODEL_LIST[0] with st.expander("Advanced Options"): return_all_chunks = st.checkbox("Show all chunks retrieved from vector search") show_full_doc = st.checkbox("Show parsed contents of the document") if not uploaded_file: st.stop() try: file = read_file(uploaded_file) except Exception as e: display_file_read_error(e, file_name=uploaded_file.name) chunked_file = chunk_file(file, chunk_size=300, chunk_overlap=0) if not is_file_valid(file): st.stop() if not is_open_ai_key_valid(openai_api_key, model): st.stop() with st.spinner("Indexing document... This may take a while⏳"): folder_index = embed_files( files=[chunked_file], embedding=EMBEDDING if model != "debug" else "debug", vector_store=VECTOR_STORE if model != "debug" else "debug", openai_api_key=openai_api_key, ) with st.form(key="qa_form"): options = ['List all pre existing conditions which may affect home insurance', 'Show the problematic components!', 'Show repair needs!'] query = st.selectbox('Select an option', options) submit = st.form_submit_button("Submit") if show_full_doc: with st.expander("Document"): # Hack to get around st.markdown rendering LaTeX st.markdown(f"
{wrap_doc_in_html(file.docs)}
", unsafe_allow_html=True) if submit: if not is_query_valid(query): st.stop() # Output Columns answer_col, sources_col = st.columns(2) llm = get_llm(model=model, openai_api_key=openai_api_key, temperature=0) result = query_folder( folder_index=folder_index, query=query, return_all=return_all_chunks, llm=llm, ) with answer_col: st.markdown("#### Answer") st.markdown(result.answer) with sources_col: st.markdown("#### Sources") for source in result.sources: st.markdown(source.page_content) st.markdown(source.metadata["source"]) st.markdown("---")