import gradio as gr import numpy as np import os from scipy.io.wavfile import write import tempfile import zipfile import shutil from pydub import AudioSegment from pydub.silence import split_on_silence import nltk # we'll use this to split into sentences import subprocess from bark import SAMPLE_RATE, generate_audio, preload_models import numpy as np from bark.generation import ( generate_text_semantic, preload_models, ) from bark.api import semantic_to_waveform from bark import generate_audio, SAMPLE_RATE # Preload models if necessary preload_models() def process_audio_files_with_logging(script, speaker, cloneFile): log_messages = "Starting audio processing...\n" sentences = script.split('\n') sentences = [item.strip() for item in sentences if item.strip()] GEN_TEMP = 0.4 # Example temperature, adjust as necessary temp_dir = tempfile.mkdtemp() for idx, sentence in enumerate(sentences): log_messages += f"Processing sentence {idx + 1}: {sentence}\n" semantic_tokens = generate_text_semantic( sentence, history_prompt=speaker, temp=GEN_TEMP, min_eos_p=0.05, ) audio_array = semantic_to_waveform(semantic_tokens, history_prompt=speaker) filename = os.path.join(temp_dir, f"audio_{idx:02d}.wav") write(filename, SAMPLE_RATE, audio_array) log_messages += f"Generated audio for sentence {idx + 1}.\n" log_messages += "All sentences processed. Starting silence reduction...\n" # Process each file to remove or reduce silence for root, _, files in os.walk(temp_dir): with open("FreeVC/convert.txt", "w") as f: for file in files: file_path = os.path.join(root, file) audio = AudioSegment.from_file(file_path, format="wav") # Detect non-silent chunks and process processed_audio = process_audio_for_silence(audio, log_messages) # Overwrite the original file with processed audio processed_audio.export(file_path, format="wav") file_name_without_extension, file_extension = os.path.splitext(file) line = f"{file_name_without_extension}|{file_path}|{cloneFile[0]}\n" f.write(line) log_messages += line + "\n" #command = "python FreeVC/convert.py --hpfile FreeVC/configs/freevc.json --ptfile FreeVC/checkpoints/freevc.pth --txtpath FreeVC/convert.txt --outdir FreeVC/outputs/freevc" #subprocess.run(command, shell=True) log_messages += "Silence reduction complete. Zipping files...\n" # Zip the processed files zip_filename = zip_processed_files(temp_dir, log_messages) # Clean up the temporary directory shutil.rmtree(temp_dir) log_messages += "Processing complete. Files ready for download.\n" return zip_filename, log_messages def process_audio_for_silence(audio, log_messages): # Parameters for silence detection silence_thresh = -32 # Silence threshold in dB min_silence_len = 1000 # Minimum length of silence to consider in ms keep_silence = 300 # Amount of silence to keep after the silence in ms # Detect non-silent chunks non_silent_chunks = split_on_silence( audio, min_silence_len=min_silence_len, silence_thresh=silence_thresh, keep_silence=keep_silence ) # Combine the non-silent chunks back into a single audio segment processed_audio = AudioSegment.empty() for chunk in non_silent_chunks: processed_audio += chunk log_messages += "Audio processed for silence.\n" return processed_audio def zip_processed_files(temp_dir, log_messages): zip_filename = os.path.join(tempfile.gettempdir(), "processed_audio_files.zip") with zipfile.ZipFile(zip_filename, 'w') as zipf: for root, _, files in os.walk(temp_dir): for file in files: zipf.write(os.path.join(root, file), file) log_messages += "Files zipped successfully.\n" return zip_filename # Define the Gradio interface interface = gr.Interface( fn=process_audio_files_with_logging, inputs=[gr.Textbox(label="Script", lines=10), gr.Dropdown(label="Speaker", choices=[("French","v2/fr_speaker_7"), ("English","v2/en_speaker_7"), ("Japanese","v2/ja_speaker_2"), ("German","v2/de_speaker_6"), ("Hindi","v2/hi_speaker_2"), ("Italian","v2/it_speaker_6"), ("Korean","v2/ko_speaker_0"), ("Polish","v2/pl_speaker_2"), ("Portuguese","v2/pt_speaker_5"), ("Russian","v2/ru_speaker_4"), ("Spanish","v2/es_speaker_0"), ("Turkish","v2/tr_speaker_1")]), gr.Files(label="clone voice")], outputs=[gr.File(label="Download Processed Files"), gr.Textbox(label="Log Messages", lines=20)], title="Audio Processing and Generation", description="Enter a script and select a speaker to generate and process audio files. Process logs will be displayed below." ) interface.launch()