import gradio as gr import tensorflow as tf from PIL import Image import numpy as np # Load your custom regression model model_path = "pokemon.keras" model = tf.keras.models.load_model(model_path) model.summary() # Check if the model architecture loaded matches the expected one labels = ['Abra', 'Aerodactyl', 'Alakazam', 'Arbok', 'Arcanine'] # Define regression function def predict_regression(image): # Preprocess image image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image image = image.resize((150, 150)) # If model expects RGB, convert to RGB image = image.convert('RGB') # Ensure image is in RGB format image = np.array(image) print(image.shape) # Predict prediction = model.predict(image[None, ...]) # Assuming single regression value confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))} return confidences # Create Gradio interface input_image = gr.Image() output_text = gr.Textbox(label="Predicted Value") interface = gr.Interface(fn=predict_regression, inputs=input_image, outputs=gr.Label(), examples=["images/abra.gif", "images/Aerodactyl.png", "images/Alakazam.png", "images/arbok.jpg", "images/Arcanine.png" ], description="A simple mlp classification model for image classification using a few pokemons.") interface.launch()