|
import os |
|
from glob import glob |
|
import numpy as np |
|
import json |
|
from matplotlib import pyplot as plt |
|
import pandas as pd |
|
def get_gts(clip): |
|
''' |
|
clip: abs path to the clip dir |
|
''' |
|
keypoints_files = sorted(glob(os.path.join(clip, 'keypoints_new/person_1')+'/*.json')) |
|
|
|
upper_body_points = list(np.arange(0, 25)) |
|
poses = [] |
|
confs = [] |
|
neck_to_nose_len = [] |
|
mean_position = [] |
|
for kp_file in keypoints_files: |
|
kp_load = json.load(open(kp_file, 'r'))['people'][0] |
|
posepts = kp_load['pose_keypoints_2d'] |
|
lhandpts = kp_load['hand_left_keypoints_2d'] |
|
rhandpts = kp_load['hand_right_keypoints_2d'] |
|
facepts = kp_load['face_keypoints_2d'] |
|
|
|
neck = np.array(posepts).reshape(-1,3)[1] |
|
nose = np.array(posepts).reshape(-1,3)[0] |
|
x_offset = abs(neck[0]-nose[0]) |
|
y_offset = abs(neck[1]-nose[1]) |
|
neck_to_nose_len.append(y_offset) |
|
mean_position.append([neck[0],neck[1]]) |
|
|
|
keypoints=np.array(posepts+lhandpts+rhandpts+facepts).reshape(-1,3)[:,:2] |
|
|
|
upper_body = keypoints[upper_body_points, :] |
|
hand_points = keypoints[25:, :] |
|
keypoints = np.vstack([upper_body, hand_points]) |
|
|
|
poses.append(keypoints) |
|
|
|
if len(neck_to_nose_len) > 0: |
|
scale_factor = np.mean(neck_to_nose_len) |
|
else: |
|
raise ValueError(clip) |
|
mean_position = np.mean(np.array(mean_position), axis=0) |
|
|
|
unlocalized_poses = np.array(poses).copy() |
|
localized_poses = [] |
|
for i in range(len(poses)): |
|
keypoints = poses[i] |
|
neck = keypoints[1].copy() |
|
|
|
keypoints[:, 0] = (keypoints[:, 0] - neck[0]) / scale_factor |
|
keypoints[:, 1] = (keypoints[:, 1] - neck[1]) / scale_factor |
|
localized_poses.append(keypoints.reshape(-1)) |
|
|
|
localized_poses=np.array(localized_poses) |
|
return unlocalized_poses, localized_poses, (scale_factor, mean_position) |
|
|
|
def get_full_path(wav_name, speaker, split): |
|
''' |
|
get clip path from aud file |
|
''' |
|
wav_name = os.path.basename(wav_name) |
|
wav_name = os.path.splitext(wav_name)[0] |
|
clip_name, vid_name = wav_name[:10], wav_name[11:] |
|
|
|
full_path = os.path.join('pose_dataset/videos/', speaker, 'clips', vid_name, 'images/half', split, clip_name) |
|
|
|
assert os.path.isdir(full_path), full_path |
|
|
|
return full_path |
|
|
|
def smooth(res): |
|
''' |
|
res: (B, seq_len, pose_dim) |
|
''' |
|
window = [res[:, 7, :], res[:, 8, :], res[:, 9, :], res[:, 10, :], res[:, 11, :], res[:, 12, :]] |
|
w_size=7 |
|
for i in range(10, res.shape[1]-3): |
|
window.append(res[:, i+3, :]) |
|
if len(window) > w_size: |
|
window = window[1:] |
|
|
|
if (i%25) in [22, 23, 24, 0, 1, 2, 3]: |
|
res[:, i, :] = np.mean(window, axis=1) |
|
|
|
return res |
|
|
|
def cvt25(pred_poses, gt_poses=None): |
|
''' |
|
gt_poses: (1, seq_len, 270), 135 *2 |
|
pred_poses: (B, seq_len, 108), 54 * 2 |
|
''' |
|
if gt_poses is None: |
|
gt_poses = np.zeros_like(pred_poses) |
|
else: |
|
gt_poses = gt_poses.repeat(pred_poses.shape[0], axis=0) |
|
|
|
length = min(pred_poses.shape[1], gt_poses.shape[1]) |
|
pred_poses = pred_poses[:, :length, :] |
|
gt_poses = gt_poses[:, :length, :] |
|
gt_poses = gt_poses.reshape(gt_poses.shape[0], gt_poses.shape[1], -1, 2) |
|
pred_poses = pred_poses.reshape(pred_poses.shape[0], pred_poses.shape[1], -1, 2) |
|
|
|
gt_poses[:, :, [1, 2, 3, 4, 5, 6, 7], :] = pred_poses[:, :, 1:8, :] |
|
gt_poses[:, :, 25:25+21+21, :] = pred_poses[:, :, 12:, :] |
|
|
|
return gt_poses.reshape(gt_poses.shape[0], gt_poses.shape[1], -1) |
|
|
|
def hand_points(seq): |
|
''' |
|
seq: (B, seq_len, 135*2) |
|
hands only |
|
''' |
|
hand_idx = [1, 2, 3, 4,5 ,6,7] + list(range(25, 25+21+21)) |
|
seq = seq.reshape(seq.shape[0], seq.shape[1], -1, 2) |
|
return seq[:, :, hand_idx, :].reshape(seq.shape[0], seq.shape[1], -1) |
|
|
|
def valid_points(seq): |
|
''' |
|
hands with some head points |
|
''' |
|
valid_idx = [0, 1, 2, 3, 4,5 ,6,7, 8, 9, 10, 11] + list(range(25, 25+21+21)) |
|
seq = seq.reshape(seq.shape[0], seq.shape[1], -1, 2) |
|
|
|
seq = seq[:, :, valid_idx, :].reshape(seq.shape[0], seq.shape[1], -1) |
|
assert seq.shape[-1] == 108, seq.shape |
|
return seq |
|
|
|
def draw_cdf(seq, save_name='cdf.jpg', color='slatebule'): |
|
plt.figure() |
|
plt.hist(seq, bins=100, range=(0, 100), color=color) |
|
plt.savefig(save_name) |
|
|
|
def to_excel(seq, save_name='res.xlsx'): |
|
''' |
|
seq: (T) |
|
''' |
|
df = pd.DataFrame(seq) |
|
writer = pd.ExcelWriter(save_name) |
|
df.to_excel(writer, 'sheet1') |
|
writer.save() |
|
writer.close() |
|
|
|
|
|
if __name__ == '__main__': |
|
random_data = np.random.randint(0, 10, 100) |
|
draw_cdf(random_data) |